

Programming instructions

Parts of the general documentation

- Part 1 : Installation and starting instructions
- ▶ Part 2 : Programming instructions
 - Part 3 : Programming communication instructions

General information:

SYCLOPE Electronique 2016[®] Notice of the 31/10/2017 Rev 2

Professional Analyzers/Controllers for water treatment. **Product line DOUBLEAU** $^{\circledast}$

Part 2 : Programming instructions (Ref : DOC0337)

Editor :

SYCLOPE Electronique S.A.S.

Z.I. Aéropole pyrénées Rue du Bruscos 64 230 SAUVAGNON - France – Tel : (33) 05 59 33 70 36 Fax : (33) 05 59 33 70 37 Email : <u>syclope@syclope.fr</u> Internet : <u>http://www.syclope.fr</u>

© 2014 by SYCLOPE Electronique S.A.S. Subject to modification

SUMMARY

I.	Use of the document	6
1)	Symbols and signs	6
2)	FCC conformity	
II.	Safety and environmental instructions	
1)	Use of the controller	
2)	User obligations	
3)	Risk prevention	
4)	Labelling and localization of the identification plate	
5)	Disposal and conformity1	.0
III.	Recall to the human-machine interface of the SYCLOPE DOUBLEAU®1	
1)	Display and control keypad1	
2)	Internal connections1	
3)	Connection terminal boards1	
IV.	Structure and index of the menus1	
1)	Structure of the menus	
2)	Tree structure and index of programming1	
۷.	Display modes and types1	
_1)	,	
VI.	User menu1	
1)		.9
	19	
2)	Select your language	
3)	Set current date and time	
4)	Interface management	
6)	About	
7)	Maintenance of the controller	
In	is screen is useful to control correct configuration of the communication via RS485	.9
τ£	29 arror states, shadk sattings on Specialist manu/Communication	20
	error states, check settings on Specialist menu/Communication	
1)	Access to the specialist menu)U
21	Technician code	21
2) 3)	Working timers	
3) 4)	Calibration of the sensors	
5)	Control settings	
6)	Flow settings	
7)	Tank settings4	
8)	5	
9)		
10		
	Specialist menu	
1)	•	
a)	•	
2)		
a)	Configure POT input	
	is input is designed to connect potentiometric sensors, be sure your sensor is compatible befor	
	in input is designed to compatible benefit of band your benefit is compatible beref	
	ing it	
	ing it	55
	Select the sensor kind	55 55
►	Select the sensor kind	55 55 55
•	Select the sensor kind	55 55 55 55
•	Select the sensor kind	55 55 55 55 55

This input is designed to connect pt100 temperature sensors, be sure your sensor is compatible I	
using it	
► Select the sensor kind	
c) Configure IN1 & IN2 input	57
This input is designed to connect different kind of sensors with 020mA or 420mA transduc	
sure your sensor is compatible before using it.	
Select the sensor kind	
► Select the sensor reference	
► Select the unit of sensor	
Select the sensor interface	
► Set the sensor measurement range "Min" and "Max"	
d) Configure K1 & K2 input	
This input is designed to connect digitals proximity sensors or dry contact switches, be sure	
sensor is compatible before using it.	
Select the sensor kind	
► Select the "Switch" kind	
Select the stand of the switch	
► Select the debounce	
► Select the "Flow" kind	60
► Set the K-factor	
► Set the max flow value	60
e) Set sensor delay	61
► Set the startup delay	61
f) Configure Vref supply voltage	62
This function allows you to set the voltage present on Vref terminal and on IN1 & IN2 terminals	. Take
care to not set a voltage higher the maximum voltage required by your sensors	62
3) Measure	
4) Flow configuration	65
5) Tank configuration	67
6) Remote	68
Select the "Timer" mode	
► Select when the remote control will be done	
► Set the time slot "Start" and "End".	69
► Set the beginning and ending dates, "From" and "To"	69
▶ Set the days of week which your time slot will be done	69
▶ Set the week repletion, means your time slot will be repeated each X weeks	69
► Select the remote action	70
70	
► Set the remote setpoint	71
▶ Set the variation speed between control setpoint and remote setpoint	71
► Select the "Input" mode	72
► Select the remote action	72
72	
7) Relay	73
Select the "Control" mode	74
► Choose which parameter is assigned to this relay	74
► Select the control direction of the actuator connected to this relay	74
► Select relay rest stand	75
► Select the drive method	
► Set the cycle duration " Period " (PWM only)	
► Set the minimum latch time "Tmin" (PWM only)	
► Set the maximal stroke frequency "Freq" (PFM only)	
► Set the control range "Min" and "Max".	
► Select the "Alarm" mode	
Choose which parameter is checked	
Choose which alarms can drive the relay	
Select the rest stand	

► Set "Ton" and "Toff" tilt duration	79
► Set " Delay " the lag time before and after the alarm to drive the relay	79
Select the "State" mode	80
Select which relay or switch is copied	
► Select the "Timer" mode	81
Select when the relay is active	81
Set the time slot "Start" and "End".	
► Set the beginning and ending dates, "From" and "To"	81
Set the days of week which your time slot will be done	81
► Set the week repletion, means your time slot will be repeated each X weeks	81
8) Analog outputs	82
9) Display	
10) Communication	
11) Settings	88
IX. USB	
1) Data recording	89
2) Save and load a configuration file	90
3) Firmware update	90

I. Use of the document

Please read this entire document before starting to install, adjust or commission your controller device, in order to ensure the safety of swimmers, users and equipment.

The information provided in this document must be strictly observed. SYCLOPE Electronique S.A.S. declines all responsibility in cases where failure to comply with the instructions of this documents is observed.

The following symbols and pictograms will be used to facilitate reading and understanding of these instructions.

- Information
- Action to be taken
- > Item of a list or catalogue
 - 1) Symbols and signs
- Identification of a continue voltage or current
- ✓ Identification of an alternative voltage or current

Protective ground

Functional ground

Risk of injury or accident. Identify a warning concerning a potentially dangerous risk. Documentation must be consulted by the user with each time the symbol is notified. If the instructions are not respected, that presents a risk of death, physical injuries or property damages.

Electric hazard. Identify a warning statement relative to a mortal electric danger. If the instructions are not strictly respected, that implies an inevitable risk of physical injuries or death.

Risk of incorrect operation or damage for the device.

Comment or particular information.

Recyclable element

2) <u>FCC conformity</u>

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference and (2) this device must accept any interference received including interference that may cause undesired operation.

Instructions to Users: This equipment complies with the requirements of FCC (Federal Communication Commission) equipment provided that the following conditions are met.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate receiving antenna,
- Increase the separation between the device and receiver,
- Connect the device into an outlet on a circuit different from that to which the receiver is connected,
- Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Remark : In order to maintain compliance with the limits of a Class B digital device, use a recommended shielded cable when connected to this device as describe in the present notice. Using a bad cable or a cable not connected to the ground voids the user's authority, which is granted by the Federal Communications Commission, to operate this equipment.

II. Safety and environmental instructions

Please :

- Read conscientiously the present notice before unpacking, installing and servicing the present controller.
- > Take care of all risks and servicing before any use.

No respect of these instructions can cause damages to the users, the technical personal and the integrity of the controller.

1) Use of the controller

The **SYCLOPE DOUBLEAU**[®] system has been designed to measure and regulate temperature, pH, Redox potential, chlorine (or bromine), Ozone, PHMB, flow, Turbidity and Conductivity by means of sensors and controls of suitable actuators in the context of the possible uses described in this manual.

All other uses are considered to be not conforming and must therefore be forbidden. SYCLOPE Electronique S.A.S. will not be responsible in any case for any damages that result from such uses.

Any use of sensors or interfaces not in conformity to the features defined in this manual must also be proscribed.

2) User obligations

The user undertakes not to allow its employees to work with the **SYCLOPE DOUBLEAU**[®] equipment described in this manual unless they:

- > Are aware of the fundamental instructions relating to work safety and prevention of accidents
- > Are trained in the use of the device and its environment
- > Have read and understood these instructions, warnings and manipulation rules.
 - 3) Risk prevention

The installation and connection of the **SYCLOPE DOUBLEAU**[®] equipment should only be performed by personnel specialized and qualified for this task. The installation must comply with current safety standards and instructions!

Before switching the controller on or manipulating the relay outputs, remember always to cut off the primary power supply!

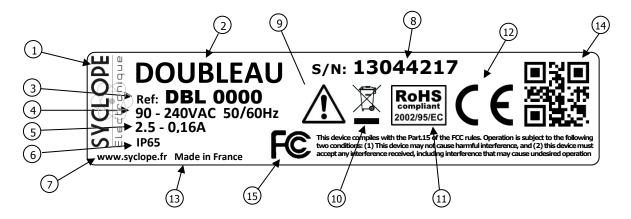
Never open the controller when it is powered on!

Maintenance operations and repairs should only be performed by trained, specialized personnel!

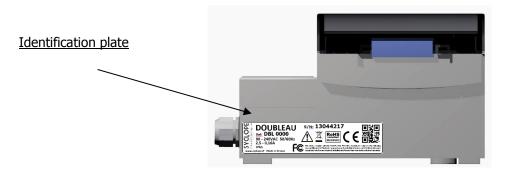
Take care when choosing the location for installing the equipment according to the environment!

The **SYCLOPE DOUBLEAU**[®] electronic box should not be installed in a hazardous environment and should be protected against splashing with water or chemical products. It should be installed in a dry, well-ventilated location, isolated

Except for the relay outputs, all connections inputs/outputs must be connected to very low safety voltages. In general, these voltages are provided by the controller and does not exceed 24V continuous.



Make sure that the chemical sensors used with this device correspond well to the chemicals used. Refer to the individual technical note of each sensor. Chemistry of water is very complex, in case of doubt, contact immediately our engineering service or your approved installer/reseller.



Chemical sensors are sensitive elements using consumable parts. They must be supervised, maintained and calibrated regularly using specific calibrator systems not-provided with this equipment. In the event of defect, a surplus possible hazard of chemical injections can be noted. In the doubt, a service contract must be taken near your reseller/installer or failing this near our engineering services. Contact your approved installer/reseller or our business service for more information.

4) Labelling and localization of the identification plate

1 Label of the manufacturer	9 Particular risks. Read the notice
2 Model of the product	10 Product which can be recycled
3 Reference of the product	(1) Limitation of dangerous substances
4 Range of power supply	(12) EC compliance
5 Values of the maximum current	(13) Country of the manufacturer
6 Class of protection	(14) Manufacturer square code
Identification of the manufacturer	(15) Conformity with the FCC part 15 Class
	В
Serial number	

5) Disposal and conformity

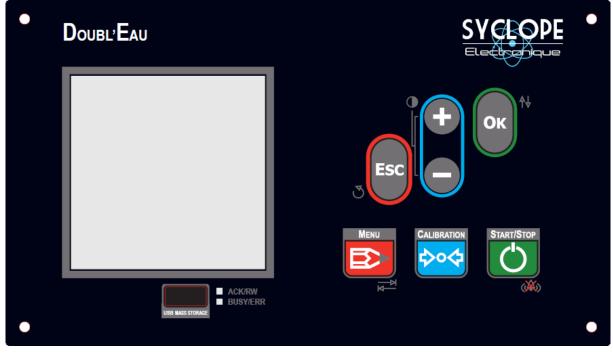
The recyclable packaging of the **SYCLOPE DOUBLEAU**[®] equipment must be disposed of according to current regulations.

Elements such as paper, cardboard, plastic or any other recyclable elements must be taken to a suitable sorting centre

According to European directive 2002/96/EC, this symbol means that as of 12 August 2005 electrical appliances cannot be thrown out together with household or industrial waste. According to current regulations, consumers within the European Union are required, as of this date, to return their used devices to the manufacturer, who will take care of disposing them at no extra expense.

Collecting and recycling of the internal batteries: According to the European directive 2006/66/CE, this symbol indicate that until September, 26th 2006, used batteries, accumulators and waste materials using dangerous heavy metals as lead (pb), cadmium(Cd) or mercury (Hg) must be collected separately by the manufacturer or by an accredited agency.

According to European directive 2002/95/EC, this symbol means that the **SYCLOPE DOUBLEAU**[®] controller is designed in compliance with the restrictions on hazardous substances


According to low-voltage directive (2006/95/EC) and the electromagnetic compatibility directive (2004/108/EC), this symbol means that the device has been designed in compliance with the previously cited directives

In accordance with part 15 of the FCC regulation (Federal communications commission), this symbol indicates that the device was tested and approved under the respect and the conditions of the limits for a Class B digital.

III. Recall to the human-machine interface of the SYCLOPE DOUBLEAU®

1) Display and control keypad

Key Menu :

Access to user menu

Key Calibration :

Access to the parameter calibration screen

ESC

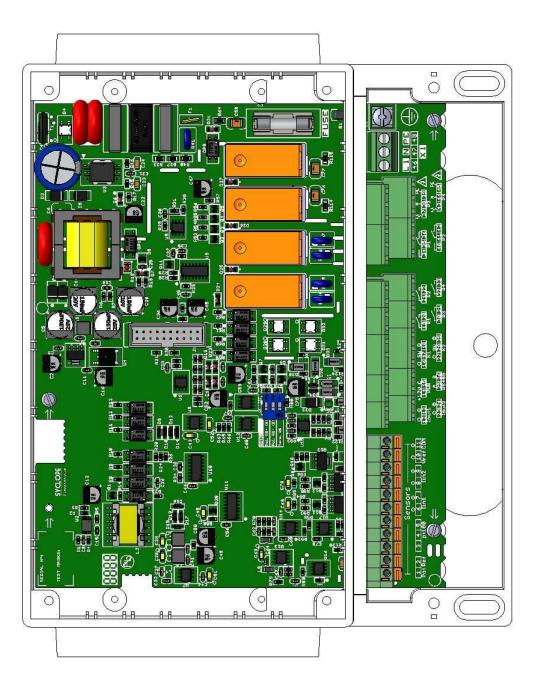
Key START/STOP :

- Start or stop the dosing process. _
- Acknowledge pending alarms.

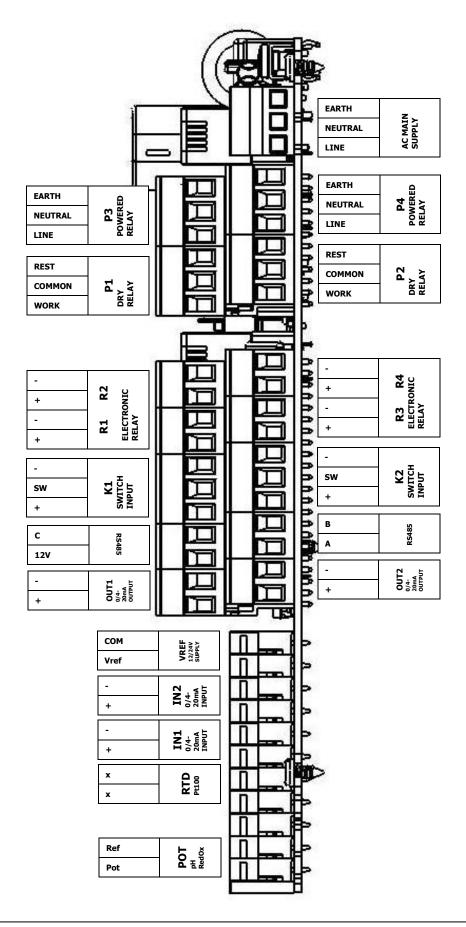
Key Esc :

- Long press on main screen to short the polarization delay of all sensors.
- Escape from menu during navigation. _

Key OK : ОК


- Invert order of parameters channel Ex on main screen.
- Check value and settings. -
- Enter to menu during navigation _

Key + :


- Increase value or select upper choice.
- Up/Back to previous menu during navigation.
- Set higher screen contrast on main screen.

Key - :

- Decrease value or select lower choice.
- Down/Next to next menu during navigation. -
- Set lower screen contrast on main screen. -

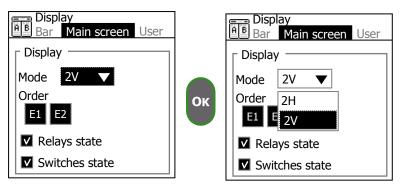
3) Connection terminal boards

Programming instructions for SYCLOPE DOUBLEAU®

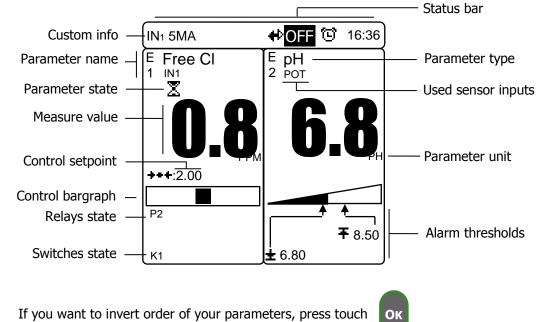
IV. Structure and index of the menus

1) Structure of the menus

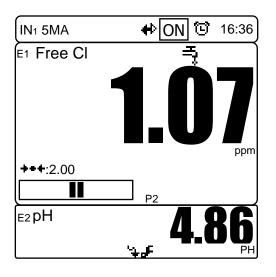
The **SYCLOPE DOUBLEAU**[®] controller uses 3 levels of menu with possibilities to protect by an access code each level against modifications. From the very simple level to the high technology level, the controller gives a gradually access to the fundamentals functions with the respect of safety for the chemical treatments and for the users.


- > User Menu : Simple access to calibrations and a standard use.
- > Technician Menu : Technical menu for setting points, alarms, ... and technical use.
- > Specialist Menu : High level to configure the system and to modify his structure.

Level	Function	Page
User	Technician menu access Select language Setting real time clock Interface management About (software version, sensor configuration,) Maintenance (After activation in the specialist menu)	19 20 21 22 25 26
Technician	Specialist menu access Technician code Working timers Sensors calibration Setting points Flow settings Dosing tanks settings Technical alarms Analogue outputs Recording management	30 31 32 35 41 47 48 49 51 52
Specialist	Specialist code Analogue inputs definition Chemical computations Flow switch and meter configuration Empty tank detection Control remote Relays definition Analogue outputs definition Displaying parameters Communications	53 54 63 65 67 68 73 82 84 84


2) Tree structure and index of programming

V. Display modes and types


► Select the main screen display mode

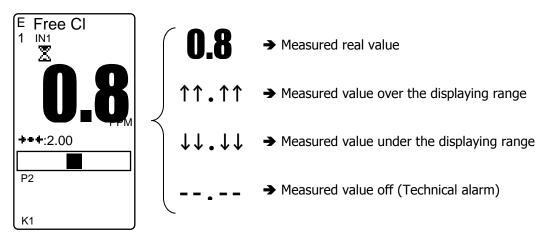
> Vertical mode 2V

Horizontal mode 2H

1) Symbols and statutes of working

Icons of the statutes bar

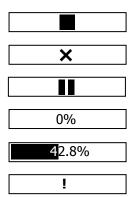
- RS485 communication is active.
- ଅ 🔸 A working timer is in progress. Parameters using timers can process controls and alarms.


The number of active timer blink in the center of symbol.

 \bigcirc N \rightarrow The device is ON state, controls and alarms are permitted.

OFF \rightarrow The device is OFF state, controls, alarms, relay and analogues outputs are disabled.

Statutes of parameter channel \geq


Measured value

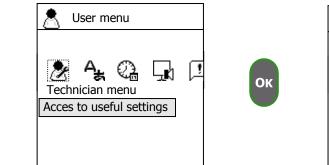
State of chanel

- High threshold crossed
 - Low threshold crossed
 - Sensor fault, out of range or disconnected
 - Max dosing time exceeded or empty tank detected
 - Control stopped due to a timer
- Remote control in progress
- Water flowing stop
- Sensor starting up
 - Sensor calibration required
- <u>л</u>Л Measurement value unstable

Control bargraph

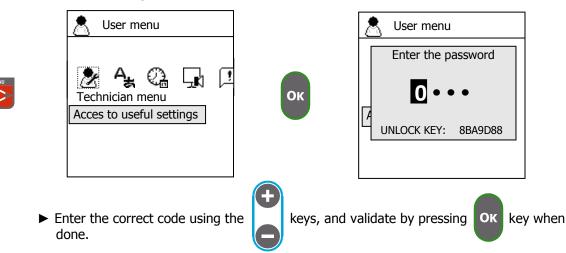
- ➔ Control stopped
- ➔ Setting point not programmed
- ➔ Pause control mode for the parameter
- ➔ No treatment needs
- → Active treatment with 42,8% of needs
- → No control. Parameter in alarm!

VI. User menu

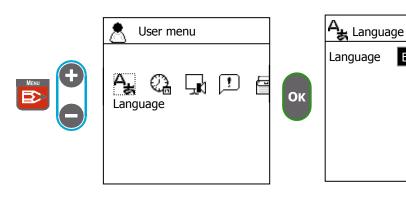

This menu allows you to change base settings and to show the current configuration.


To enter in the user menu, press the

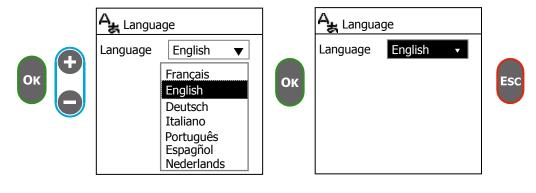
key. Now you have access to the user menu.


1) Technician menu access

This function allows you to access to the technician menu...

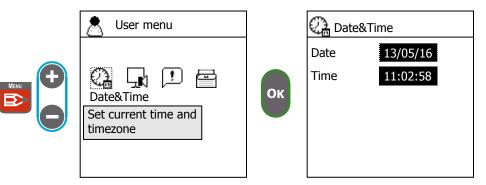


If a technician code was registered:



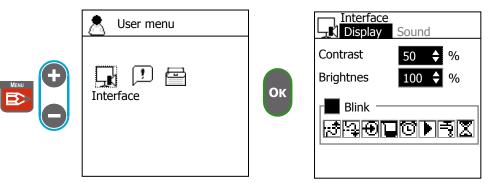
2) Select your language

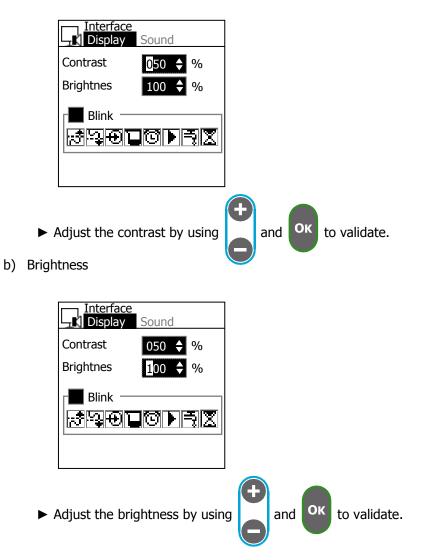
► Go to the "Language" screen


► Choose your language

English

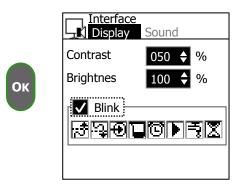
OK


- 3) Set current date and time
- ► Go to the "Date&Time" screen


► Edit date and time field according your local timezone

🖓 Date&Time			🕼 Date&Time		
Date Time	13 /05/16 11:02:58	•	Date Time	14/05/16 11:03:08	Ок

- 4) Interface management
- ► Go to the "**Interface**" screen


a) Contrast

c) Blink

This function allows you to blink the display when alarm occurs. You can choose which alarm cause blinking.

► Check the checkbox to enable the blink function

Select which alarm cause blinking

	Interface Display	Sound
	Contrast	50 🔶 %
	Brightnes	100 🔷 %
ОК	I Blink — I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

In the example the display blink if a sensor fault occurs.

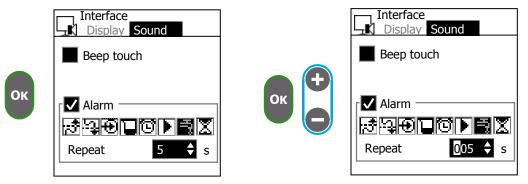
- High threshold alarm
- Low threshold alarm
- Sensor fault, out of range or disconnected
- Overdose time or empty tank
- Pause due to a timer
- ĨSª⊕⊒©►?™ Control remote
- Water not flowing
- Pause due to a sensor delay

To acknowledge pending alarm press any key on main screen

d) Beep touch

This function allows you to have a beep when pressing the key.

	Interface Display Sound
	Beep touch
ОК	Alarm Alarm Repeat 5 \$ s


e) Alarm

This function allows you to have an alarm sound when alarm occurs. You can choose which alarm cause sound.

► Check the checkbox to enable the alarm function

	Interface Display Sound
	Beep touch
ОК	Alarm
	Repeat 5 🕈 s

Select which alarm cause sound and the repetition interval

In the example the alarm sound occurs every 5 seconds when water no flowing.

- rn Sa⊕ ∎ High threshold alarm
- Low threshold alarm
- Sensor fault, out of range or disconnected
- Overdose time or empty tank
- Pause due to a timer
- © ► Prove Control remote
 - Water not flowing
 - Pause due to a sensor delay

To acknowledge pending alarm press any key on main screen

6) <u>About</u>

This screen allows you to see a summary of your configuration.

► Go to the "About" screen

	📩 User menu		🚺 Abou	Jt	
			Name		DOUBLEAU
	н Прикански ок		ID		14025364
		Ок	Version		0.03
			Language		English
	SN, configuration, settings		Control E	1	Free Cl
			Measure E	2	pН
				POT	
► L	Jse to scroll the screer	and see a	all the info	rmatior	n.

General information:

Name	Name of the device
ID	Serial number
Version	Software version
Language	Current interface language
Control/measure E1	Kind of parameter selected on E1
Control/measure E2	Kind of parameter selected on E2

Sensors information :

POT/RTD/IN1/IN2/K1/K2			
Kind	Kind of measure		
Signal	Signal value of the sensor		
Mes	Measure value		
Ref	Reference name of your sensor		
Slope	Calibration slope		
Drift	Drift of the slope, 0% means your sensor is perfect		
Offset	Calibration offset		
Zero	Isopoint of your sensor		

Switches information :

IN1/IN2/K1/K2				
Kind	Switch			
State	Open/Closed			
Stand	Stand on switch: NO/NC			

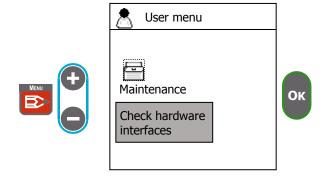
Common

Vref IN1, IN2 and Verf terminals voltage: 12V/24V

7) Maintenance of the controller

This function allows you to control and to test the good working of the controller interfaces. When activated, it is possible to test relays, to generate an analogue signal for example.

It is strongly recommended to use this function when starting the controller to ensure all systems work normally. Do not let this function programmed! Remove it when tests are done.


Be careful! These utilities can drive the relays or analogue outputs. Ensure that no chemical product will be injected during these tests.

After using maintenance functions, all the manipulations done will be cancelled and reinitiated by the controller.

The maintenance function is displayed and authorized only after his activation in the specialist menu.

► Go to the "Maintenance" screen

a) Relay

Activation or inactivation of the relays will start or stop the dosing systems. Take all disposition to prevent any risk of damage.

Impulse signal function cannot be simulated. Only, one impulse could be generated by the selected relay.

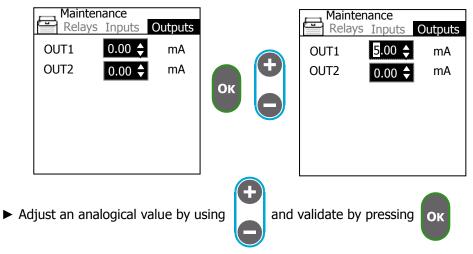
"PWR" relay P3 and P4 are self-powered relay, means this relay are connected to the main power supply. Use appropriate measurement instrument to check working.

	laintenar Relays		Output
_Γ RCT	۲ .		
P1		P2	
_Γ PWF	२.~л		
P3		P4	
۲ ELC	-⊀		
R1		R2	
R3		R4	

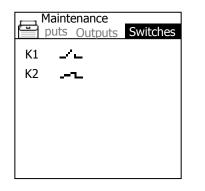
a) Inputs

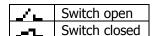
On this screen you can see the inputs interface measure value, for potentiometric "POT" and thermistance "RTD" inputs the value is also expressed in pH and °C according the perfect sensor slope and offset.

	intenance elays Inputs	Output
POT	-29mV	7.96pH
RTD	108ohm	22°C
IN1	8.4mA	
IN2	0.0mA	


a) Analogue outputs

The activation of an analogical output can engage a dosing actuator or can generate an analogical signal to a PLC or to a local recording system. Take all dispositions to prevent risks during testing!




After the test, all analogical outputs will be reset into the initial programmed type. (That means "0mA" for the 0...20mA outputs, "4mA" for the 4...20mA outputs or inhibition current if programmed.

- ► Verify the analogue output with a measuring equipment.
- b) Switches

On this screen you can see the state of digitals inputs.

c) Communication RS485

This screen is useful to control correct configuration of the communication via RS485.

Maintenance Output Sv	e victhes COM
NO-COM	0B/s

State message				
NO-COM No activity or wires unplugged				
ERR-RS485 Speed or parity error. Inverted wires connection				
ERR-MODBUS	Unavailable register or function request, check the register table			
COM-OK Communication ok				

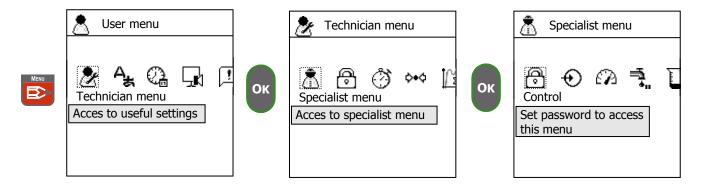
G

If error states, check settings on Specialist menu/Communication.

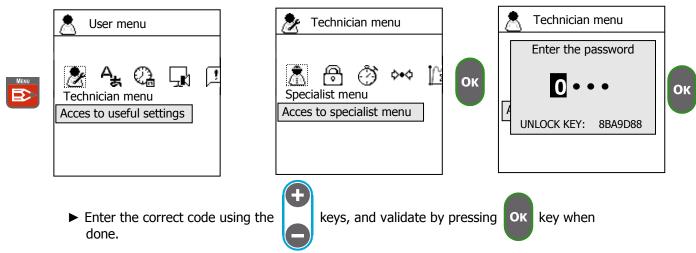
VII. Technician menu

This menu allows to modify all the basic configurations authorized to a confirmed technician. These configurations don't modify the technical structure of the controller.

The access to the « Technician Menu » stop the dosing processes!



If the access is protected by an unknown code, please call an agreed reseller!


1) Access to the specialist menu

To enter in the user menu, press the \mathbf{E}

key. Now you have access to the user menu.

If a specialist code was registered:

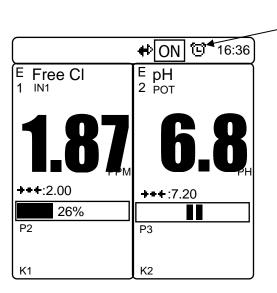
2) Technician code

To modify or to delete the code used to protect this menu level.

a) Modify the access code

This procedure allows you to modify the access code.

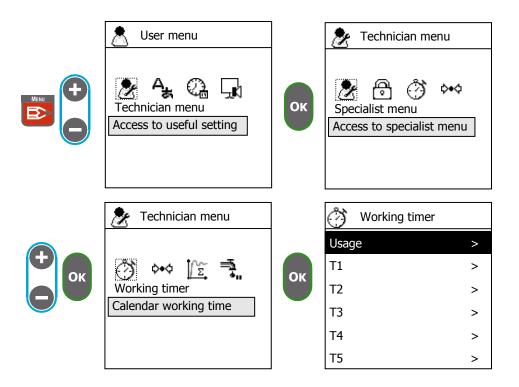
🧞 Technician menu		A Technician menu	
		Set new password	
Technician pass Set the password to access this menu	ОК	S tt	
► Enter a new code by	using	t and validate with OK ke	ey.


b) Cancellation of the technician code

This procedure allows you to cancel the technician code and to free the access of this menu.

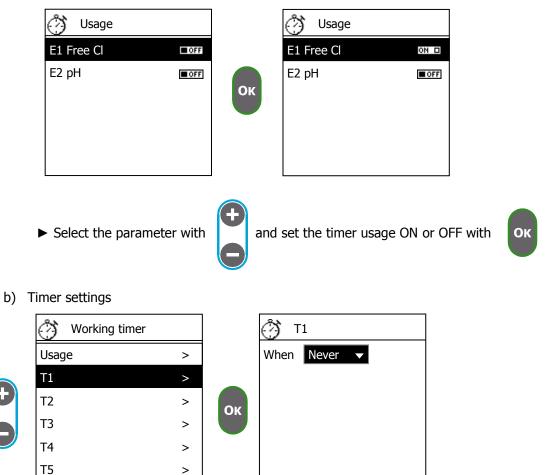
► Enter the value « 0000 » to cancel or to delete the present code.

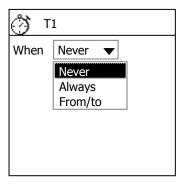
3) Working timers


This procedure allows you to define the normal working times of your controller. Out of these working times, clock indicator appear in the status bar to inform the user of the state.

-(73)

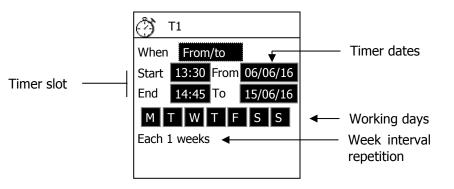
Blinking with the timer number


► Go to the "Working timer" screen


a) Timer usage

With this function you can select which parameters use timers to define working time.

If you set usage to **DFF** the parameter process (control and alarm) not depends about the timers, if it's set usage to **DH D** it can be done only if at less one timer is active.



► Choose when the timer will work.

Never	The timer is not used				
Always	There is no end date, your timer setting will				
	always be repeated				
From/to	You can select the starting and ending date,				
	therefore your timer will work only between these				
	dates				

- Set the timer slot
- Set the timer date
- Set the working days
- ► Set the repetition interval

Start and **End** field define the time slot of working. **From** and **To** allows you to define the dates interval where the time slot will be done.

The "**MTWTFSS**" button represent each days of week, it allows you to choose witch days the timer slot will work.

You can also define the repetition interval of the defined week.

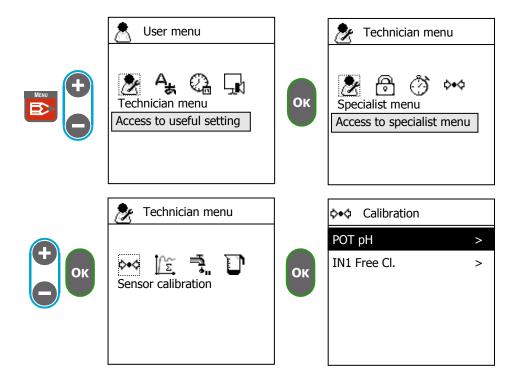
Example of configuration:

٢	T1		
When	From	/to	l
Start	08:00	From	01/06/16
End	21:30	То	30/06/16
Μ	ΓW	ΤF	S S
Each 2	2 weeks		

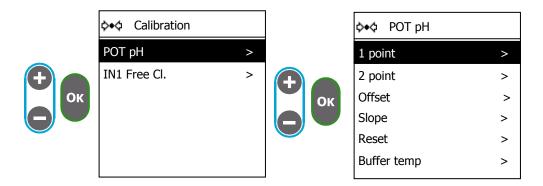
According the previous screen settings and the calendar. Timer slot **start** at 8h00 **end** at 21h30, it works **from** 1st june 2016 **to** 30th june 2016, the permeated days are only on Tuesday and on Friday. Week interval is 2 so allowed weeks are:

1st - 5th 13th - 19th

27th - 30th

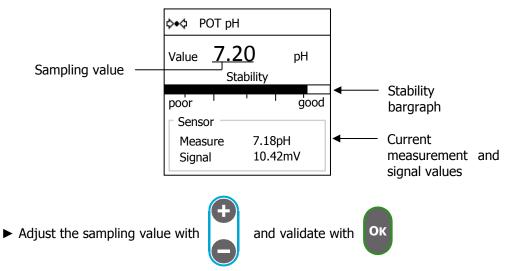

June							
Μ	Т	W	Т	F	S	S	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27							

Therefore, timer dates are 3, 14, 17 and 28th june and they start at 8h00 and end at 21h30.


4) Calibration of the sensors

This procedure allows you to calibrate each sensor. It can perform different operations:

- > 1 point: To adjust the value online based on sampling measure.
- 2 point: To adjust slope and/or offset using 2 different buffers. (only available with pH and Redox sensors)
- > Offset: To ajust the offset of sensor.
- Slope (Gain): To adjust the slope of sensor.
- > Reset: To clear the slope and the zero programmed and to return to the factory values.
- > Buffer temp: To define the buffer temperature when sensor value is temperature dependent.
 - ► Go to the "Sensor calibration" screen

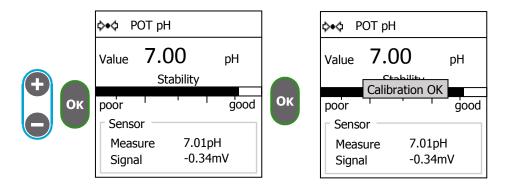


Select the sensor and the calibration method.

Technician menu

a) 1 point

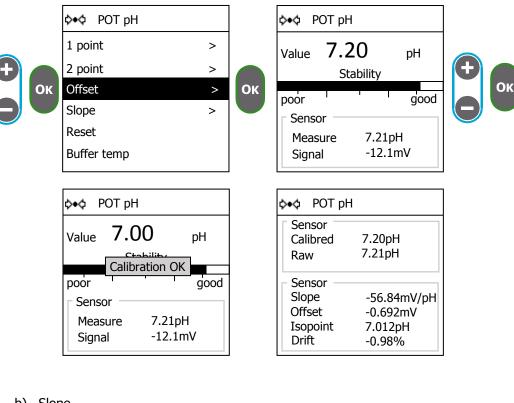
To perform a correct calibration, the measure must be stable. A bar graph helps you to know if stability is stable enough. If stability is no stable enough when you try to calibrate a message box will open to inform you to retry operation.

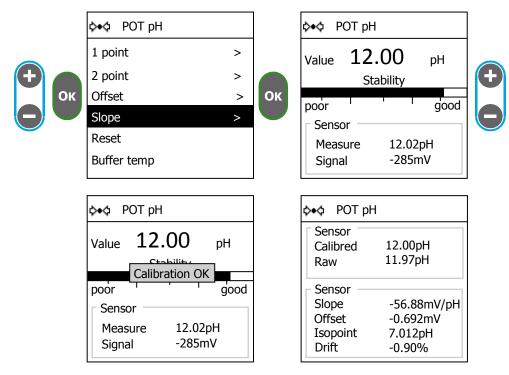

b) 2 point

To perform this calibration method, you must use tow buffers solutions.

- ► Remove the sensor from the process.
- Clean it.
- ► Insert the sensor probe into the first buffer.
- ► Set the first calibration point.

_				
1	¢∙ф РОТрН		¢•¢ POT pH	
	1 point >		Value 4.05 pH	
Ок	2 point > Offse Set the first calibration point > Slope > Reset > Buffer temp >	+ Ок	Stability poor good Sensor Measure 4.08pH Signal -167mV	ОК
-	♦•♦ POT pH Value 4.05 pH First point OK, do point good poor calibration point good Sensor 4.08pH Signal -167mV		This message box indicate first calibration point correctly performed	•

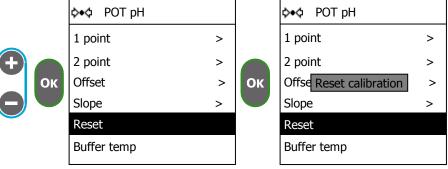

- ► Clean the probe.
- ► Insert the sensor probe into the second buffer.
- ► Set the second calibration point.


After calibration done, a results screen will be displayed during few seconds.

ф∙ф РОТрН	
Sensor Calibred Raw	7.00pH 7.01pH
Sensor Slope Offset Isopoint Drift	-56.84mV/pH -0.342mV 7.006pH -0.98%

a) Offset

b) Slope

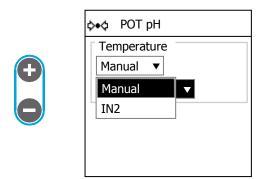


Calibration of the slope must not be performed with a value near zero. Proceed to the slope calibration with a highest possible value.

c) Reset

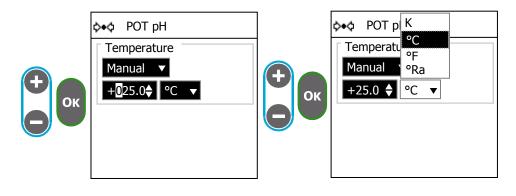
This function allows you to reset the current calibration slope and offset of the sensor with the factory values.

You must perform this operation if you change your sensor or if you've done a bad calibration.


d) Buffer temp

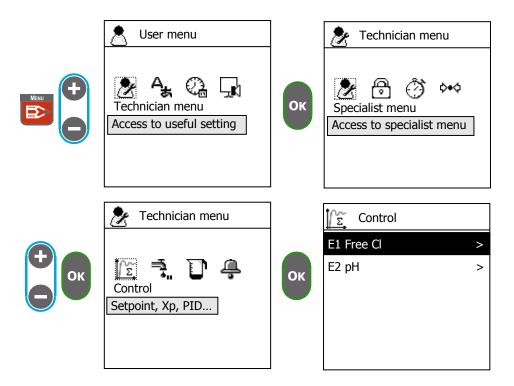
This function allows you to define the temperature of the calibration buffer, this function is available only with temperature dependent sensors.

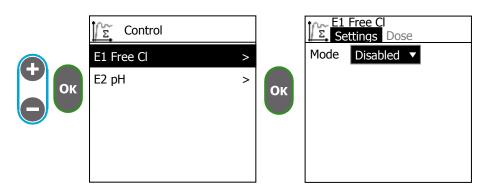
It's recommended to stock the buffer at room temperature.


+ Ок	¢∙¢ POT pH			ф∙ф РОТрН
	1 point	٧	Ок	Temperature
	2 point	>		Manual v
	Offset	>		+25.0 ♦ °C ▼
	Slope	>		
	Reset			
	Buffer temp			

► Select the temperature source.

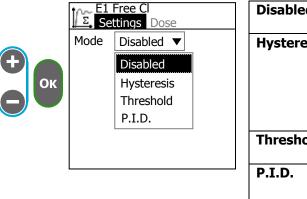
If you had defined a temperature sensor it is possible to use it, however it is possible to manually set the temperature.


- ► Set the temperature.
- ► Select the temperature unit.

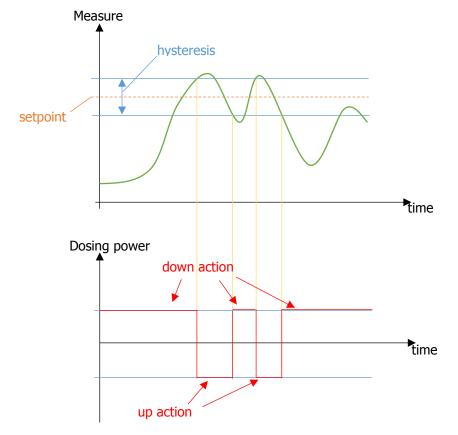

5) Control settings

This procedure allows you to tune all control settings of each parameters.

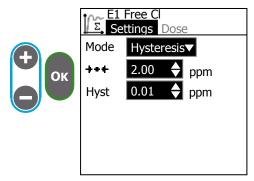
► Go to the "Control" screen



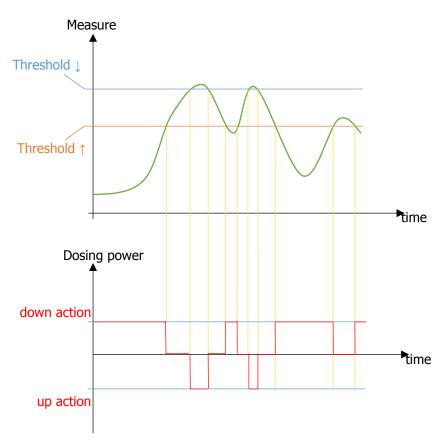
► Select the parameter you want to tune.


Technician menu

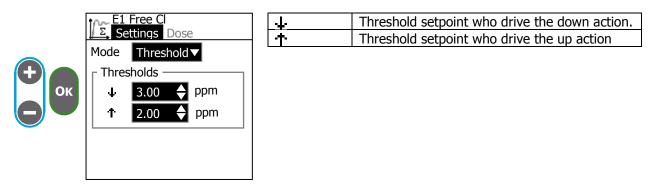
a) Select the computation mode


Disabled	The parameter is in measure only mode, no control is done.		
Hysteresis	This mode is an on/off control, the hysteresis value is the gap between two points centered around the setpoint, when measure value is upper the highest point the control drives the down actuator, when the measure is lower the lowest point control drives the up actuator		
Threshold	This mode allows you to define two thresholds, one to drive down and the other to drive up.		
P.I.D.	This mode is linear computation, the drive control is based three components, the Proportional, the Integral and the Derivate.		

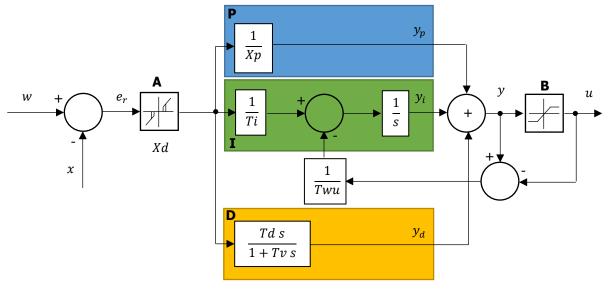
b) Hysteresis mode


► Set the setpoint.

► Set the hysteresis value.



***	Control setpoint value.
Hyst	Hysteresis value


c) Thresholds mode

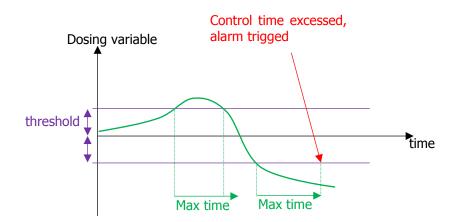
► Set the down and up threshold.

d) P.I.D. mode

- A Neutral zone
- B Output limiting
- P Proportional compute
- I Integral compute
- D Derivative compute
- Xp Reciprocal proportional value
- Ti Integral action time
- Td Derivative action time
- Xd Neutral zone dead value
- Tv Damping time constant
- Twu Anti-windup time

- w Set point
- x Controlled variable
- e Control deviation
- y Manipulated variable
- u Drive variable

The difference between the set point w and the controller variable (measured value) x results in the control deviation which is filtered by a neutral zone.

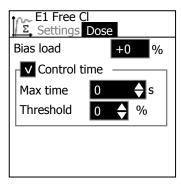

The neutral zone **A** is used to suppress control deviation e that are too small. The control deviation thus filtered is now fed to the actual PID controller which divides into three parts based on the **P** (proportional), **I** (integral) and **D** (derivative) values (top-down). The integral section (green) also comprise an anti-windup mechanism for limiting the integrator. A sum of the 3 components results in the manipulated variable which is limited according to the relays and current outputs settings, **B** (-100% to 0% or 0% to +100% or -100% to +100%).

	10-	Free Cl		***	Control setpoint value.
+ Ок	<u>∦ ≥. Sa</u> Mode +++ Xp	ettings Dos P.I.D. 2.00 ◆ 0.50 ◆	e ppm ppm	Хр	Reciprocal proportional value. If deviation (w-x) is equal to Xp, the drive variable is 100%, decrease Xp will drive harder your pumps for the same deviation. 0.4700% of the measurement scale
	Xd Ti	0.00 ♦ 0 ♦	ppm s	Xd	Neutral zone dead value, if deviation is smaller than this value, no drive is done. 020% of the measurement scale
	Td	0	S	Ті	Integral time, action eliminates offset. If used should be at less equal to the loop feedback time. 09999s
				Td	Derivative time, reduce the drive overshoot. 0250s

a) Dosing setting

This screen tab allows you to set a bias load to the computed drive variable. You also can define a maximum dosing time to prevent overdosing du to control feedback problem.

E1 Free Cl Settings Dose Bias load +0 % Control time Max time 0 \$ s Threshold 0 \$ %		This value is add to the drive variable after control computation. The bias load is signed to take care the drive direction, a positive load add load to the direct action actuator to up the control value. -30+30%
	Control time	If control time is enable the drive variable is check before the bias load is added.
	Max time	Time limit during the drive variable is higher the threshold before the overdose alarm is trigged.
	Threshold	Drive variable threshold to check the control time. 090%


example: bias load + 10% max time 900s threshold 5%

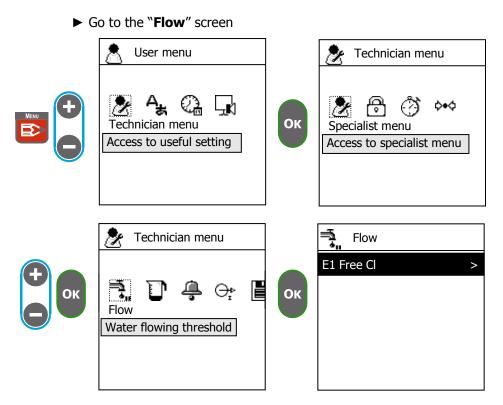
If the setpoint is reached and therefore the need for dosage is 0%, this value is less than the threshold, dosing time is not taken into account. After addition of a bias load of 10%, dosing action is 0% + 10% = 10%

If the need for dosage is 8%, this value is higher the 5% threshold, the dosing time is counted if the need remains higher this threshold for more than 900s alarm overdose will begin. The dosing action after addition of the bias load is 8% + 10% = 18%

If the need for dosage is -6% this value is higher the 5% threshold (absolute value), the dosing time is counted if the need remains higher this threshold for more than 900s alarm overdose s 'will trigger. The dosing action after addition of the bias charge is -6% + 10% = 4%

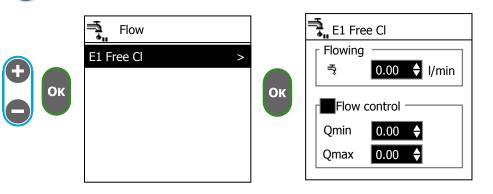
► To enable the control time check the box using OK

► Set the Max time and threshold using



If drive variable is higher than the **threshold** during the **Max time**, overdose alarm is trigged. To acknowledge the overdose alarm by pressing hold the key.

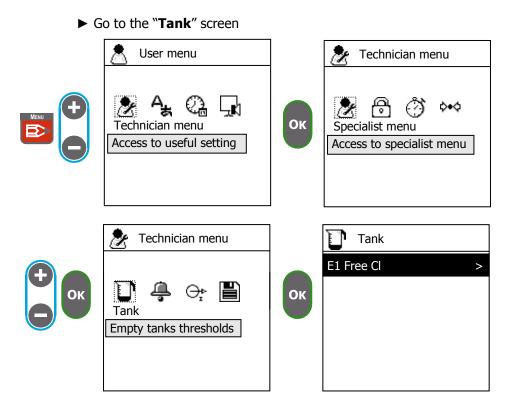
6) Flow settings


This screen allows you to define a flowing threshold value to prevent water flowing stop or too small who can alter the measure precision.

You can also define two flowing value to proportionally compensate the drive variable.

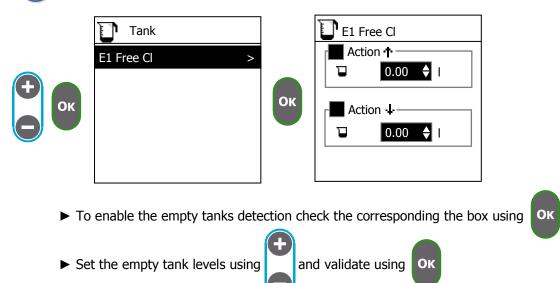
► Select the parameter you want to configure.

The list only contains parameters with control enabled in the control screen and you can edit settings only if a flow meter has been defined in the inputs screen.

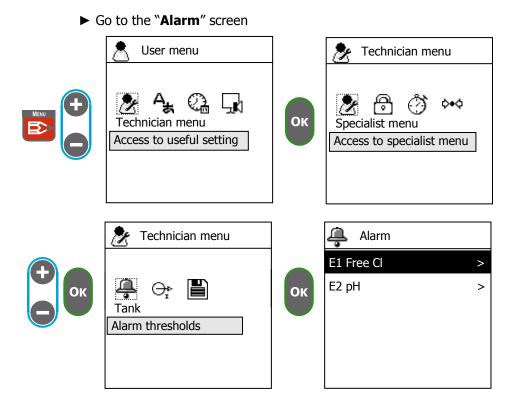


- ► Set the flowing threshold value.
- ► Set the two flowing value which correspond to the proportional control drive.

$A = \frac{Q}{Q_{max}}$	$\underbrace{Q_{min}}_{q_{min}} \qquad \qquad \text{where} Q \in [Q_{min}; Q_{max}] \text{->}$	d = u	× A
-	Flow corresponding to 0% gain	А	Flow proportional gain
Qmax	Flow corresponding to 100% gain	u	Drive variable
Q	Flow value	d	Actuator variable

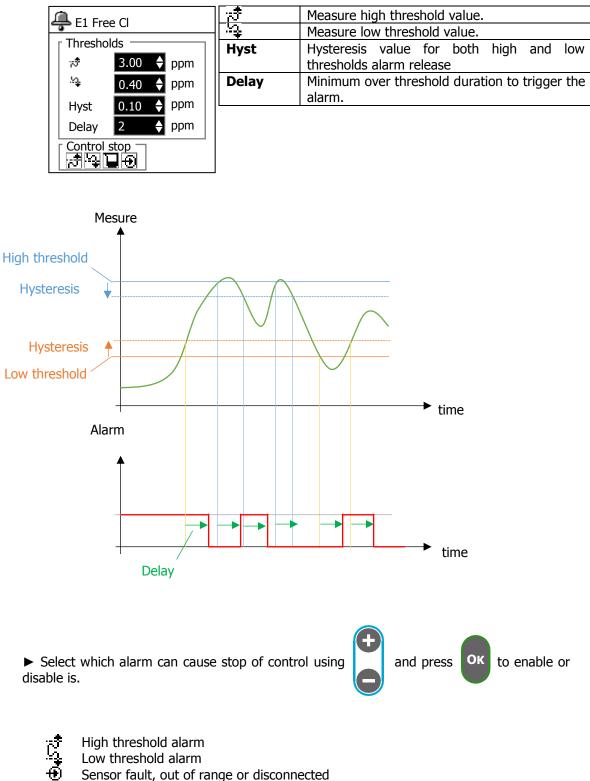

7) Tank settings

This screen allows you to define level of tanks to indicate one of tanks is empty.


► Select the parameter you want to configure.

The list only contains parameters with control enabled in the control screen and you can edit settings only if a volume meter has been defined in the inputs screen.

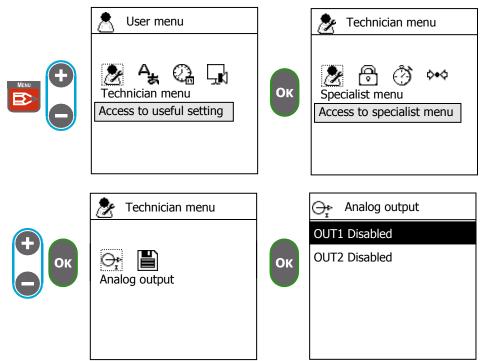
8) Alarms


This screen allows you to define measure alarm thresholds and the alarms conditions who stop the control.

► Select the parameter you want to configure.

Adjust the thresholds settings

Overdose time or empty tank



If an alarm stop control, you should fix reasons why its happen and restart control by pressing hold the key.

9) Analog outputs

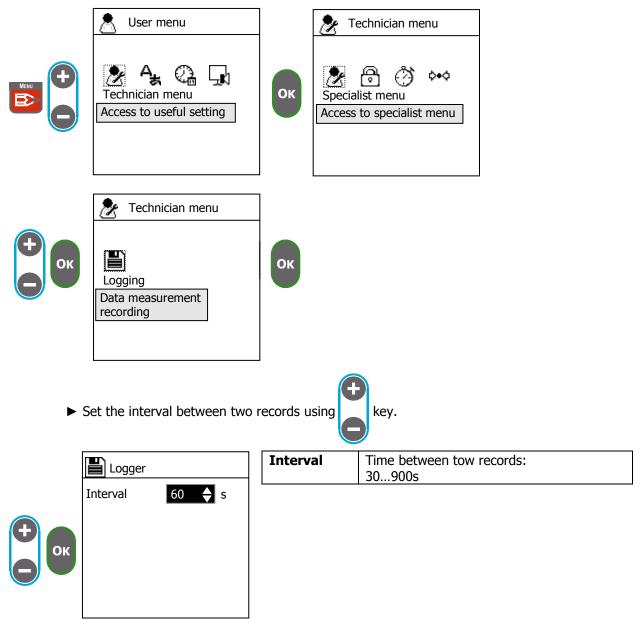
This procedure allows you to define the ranges of the analogue outputs.

► Go to the "Analog output" screen

► Select the parameter you want to configure.

You can only edit the analog output which are set in the "Specialist menu".

► Edit the high point "20mA" and low point "0/4mA" corresponding to your actuator driving range or your recording range.



If the analog output mode selected in "Specialist menu" is set to "Control" the range is in percent of drive variable.

10) Data recording

The **SYCLOPE DOUBLEAU**[®] controller has internal memories used to record measurements, calculated parameters and events. These data are write to a USB stick.

► Go to the "**Logging**" screen

The internal memory of the device makes it possible to store data without USB stick connected. When you connect a stick, internal memory containing all the previous records is transferred to the stick. Longer is the interval recording time, longer is the time you have to disconnect the stick, transfer the data into your computer and connect the stick to the device.

To calculate the time you have to transfer data to a computer using this calculation:

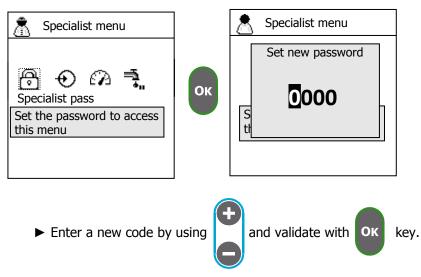
Time disconnected X = 15min (range / 30s)

Example: if you select an interval to 30s you have internal memory recording 15min, if you selected 900s you have 7h30min.

Page 53/94

VIII. Specialist menu

This menu allows to the specialist to modify the complete configurations as:

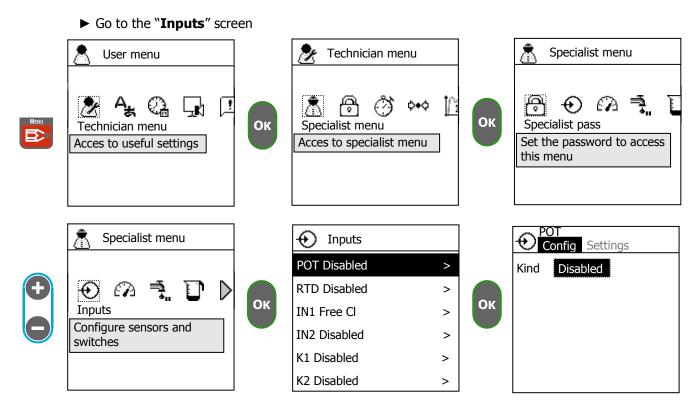

- > Define sensors and detector connected to inputs
- Realizing computation between inputs to create parameters
- > Definition of the conditional working of the regulations
- Configure the empty tank detection
- Program a control remote
- Using the relays
- Using the analog outputs
- Set the screen display options
- Define communications types and modes
- Initialize the controller configuration

1) Specialist code

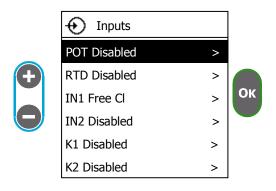
To modify or to delete the code used to protect this menu level.

a) Modify the access code

This procedure allows you to modify the access code.


b) Cancellation of the specialist code

This procedure allows you to cancel the specialist code and to free the access of this menu.

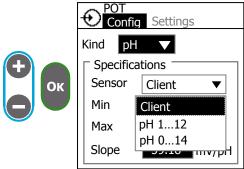

► Enter the value « 0000 » to cancel or to delete the present code.

2) Inputs

This menu allows you to define which sensor or detector are connected to the inputs.

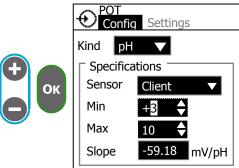
► Select the input corresponding the sensor you want to define

a) Configure POT input

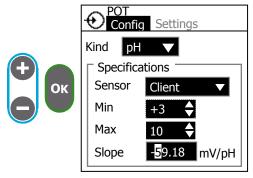

This input is designed to connect potentiometric sensors, be sure your sensor is compatible before using it.

► Select the sensor kind

	€ Co	DT Dnfig Settings
+ ок	Kind	Disabled Disabled pH RedOx
_		


Disabled The input is disabled.		The input is disabled.
	рН	pH sensor
	RedOx	RedOx sensor

► Select the sensor reference



The list of sensors depends the kind you had selected, in case you choose the "**Client**" sensor you can define the scale of this one.

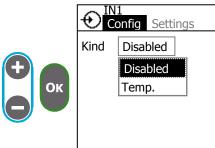
► Set the sensor measurement range "Min" and "Max".

► Set the sensor slope "Slope" (only available with pH sensors kind).

b) Configure RTD input

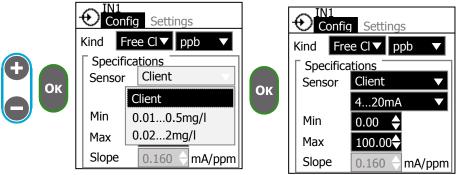
This input is designed to connect pt100 temperature sensors, be sure your sensor is compatible before using it.

► Select the sensor kind

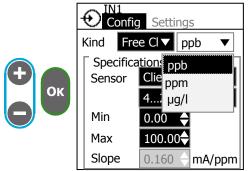

	Config Settings	Disabled	The input is disabled.	
		Temp.	pt100 temperature sensor	
	Kind Disabled			
	Disabled			
ОК	Temp.			
	RTD	Г		
	Config Settings			
	Kind Temp. ▼ °C ▼			
	☐ Specifications			
	Sensor <u>-20110°C</u> ▼			
	Min -20 🔶			
	Max 110 			

X

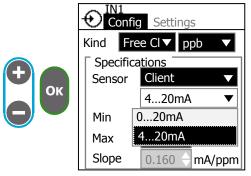
c) Configure IN1 & IN2 input


This input is designed to connect different kind of sensors with 0...20mA or 4...20mA transducer, be sure your sensor is compatible before using it.

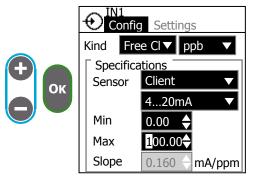
Select the sensor kind


Disabled	The input is disabled.		
Switch	Use the input as a digital input		
Free Cl	Free chlorine sensor		
Active Cl	Active chlorine		
Total Cl	Total chlorine		
Chlorite	Chlorite		
CIO2	Chlorine dioxide		
H2O2	Hydrogen peroxide		
BCDMH	Bromo chloro dimethylhydantoin		
DBDMH	Dibromo dimethylhydantoin		
Free Br.	Free bromine		
PAA	Peracetic acid		
Ozone	Ozone		
02	Dissolved oxigen		
РНМВ	Polyhexanide		
Turbidity	Turbidity		
Cond.	Conductivity		
Temp.	Temperature		
Flow	Flowing detection and control compensation		
рН	Potential of hydrogen		
RedOx	Reduction oxidation reaction		
Volume	Empty tank detection		

► Select the sensor reference



The list of sensors depends the kind you had selected, in case you choose the "**Client**" sensor you can define the scale of this one.


► Select the unit of sensor

► Select the sensor interface

► Set the sensor measurement range "Min" and "Max".

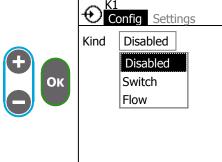
Measurement range depends on your sensor specifications take care to use correct settings

When you select a "Client" sensor, the slope is automatically computed based on measurement range and sensor interface.

Using analog input as a digital input:

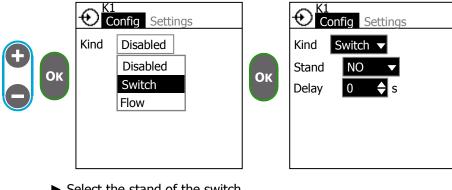
► Select "Switch" kind

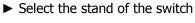
► Adjust the thresholds currents

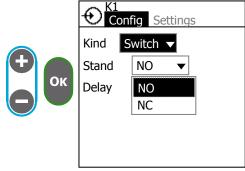

	If current is under the threshold the switch is read as open 020mA
7-	If current is over the threshold the switch is read as closed 020mA

- ► Select the switch stand according the application
- ▶ Set the debounce time, this delay is applied on both closing and opening actions
- d) Configure K1 & K2 input

This input is designed to connect digitals proximity sensors or dry contact switches, be sure your sensor is compatible before using it.

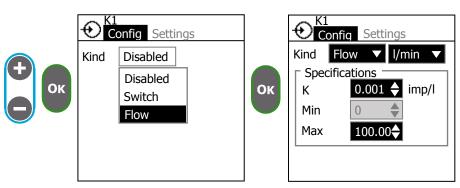

Select the sensor kind



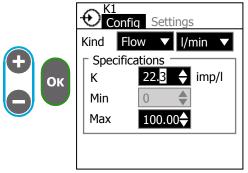

Switch State contact
Flow Pulsed contact used for flow-meter

Using digital input for state:

► Select the "Switch" kind



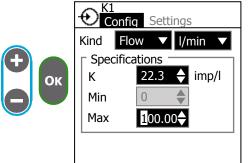
Select the debounce


Image: Kind Switch T Stand NO Delay 05 Image: s Delay Debounce delay:	
---	--

Using digital input for pulse (flow-meter):

► Select the "Flow" kind

► Set the K-factor


Flow rate computation factor:
0.0012000 imp/l or imp/m3

To compute the K-factor, use the instructions on your flowmeter manual.

Κ

► Set the max flow value

Min	To indicate flowing stop, all the selected switches and flowmeter must be inactive
Мах	Max flow rate of the flowmeter: 0.00012000 [flow_unit]
	· · · ·

- e) Set sensor delay
 - Set the startup delay

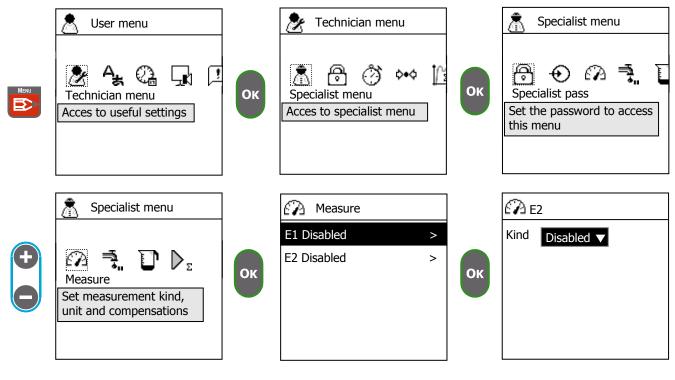
← Config Settings Startup delay ← min

Startup delay	0480min

This delay prevents sensor measurement error after device startup or following an analysis water flowing stop. During this phase the symbol $ar{\Sigma}$ blink on main screen.

f) Configure Vref supply voltage

This function allows you to set the voltage present on Vref terminal and on IN1 & IN2 terminals. Take care to not set a voltage higher the maximum voltage required by your sensors.


► Select the Vref line using the key OK

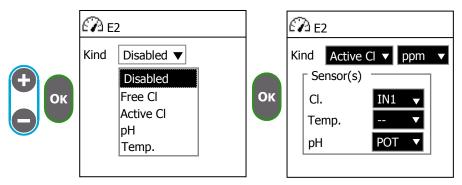
	• Inputs			Inputs			Inputs	
	POT Disabled	>		RTD Disabled	>		RTD Disabled	>
Ð	RTD Disabled	>		IN1 Free Cl	>		IN1 Free Cl	>
	IN1 Free Cl	> (ОК	IN2 pH	>	ОК	IN2 pH	>
	IN2 Disabled	>		K1 Flow	>		K1 Flow	>
	K1 Disabled	>		K2 Switch	>		K2 Switch	>
	K2 Disabled	>		Vref	120 🗆		Vref	■240

3) <u>Measure</u>

This menu allows you to define the measure parameters, these parameters can be compute based on one or multiple sensors defined on the inputs menu.

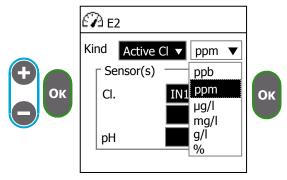
► Go to the "**Measure**" screen

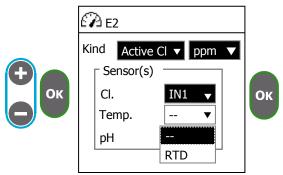
► Select the parameter



Example: if you had set a pH sensor on POT input, a free chlorine sensor on IN1 input and a temperature sensor on RTD input.

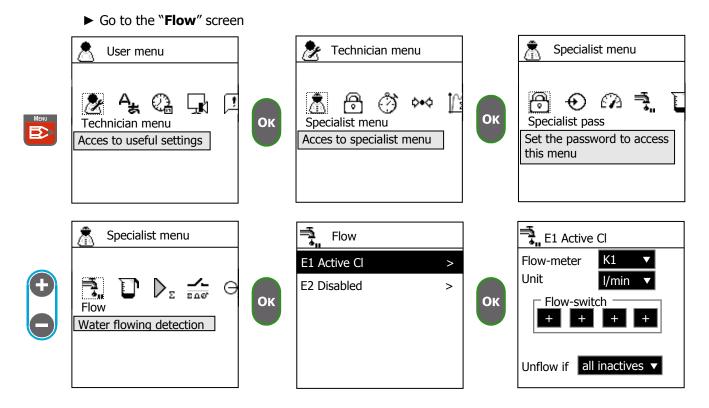
The kind list depends on which sensors you had defined on the input menu.

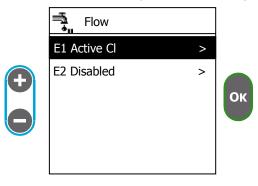

Select measurement kind


According the sensors defined on the input menu you can choose the same kind of the sensor or computed kind based on several sensors.

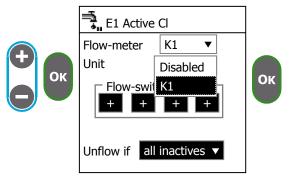
Here you can select, free chlorine, pH and temperature form the sensors and active chlorine from computation.

Select measurement unit


► Choose the sensor input used to compute the parameter measure.

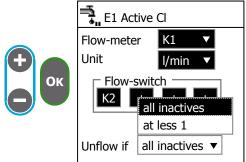

In case you select a parameter kind which can be temperature dependent, you have the choice to use sensor or not, if not the temperature is 25°C.

4) Flow configuration


This menu allows you to define the flowing detection and flow metering based on inputs sensors and switches.

► Select the parameter which you want to configure the flow detection

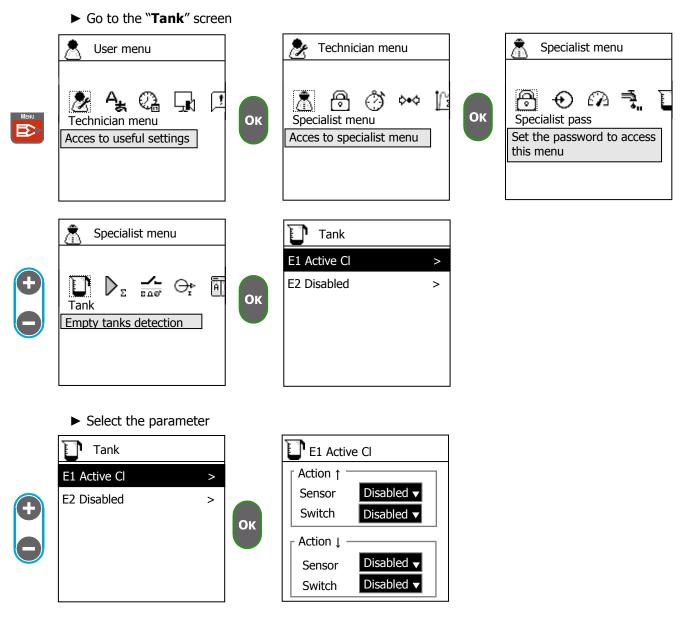
Select the flowmeter input

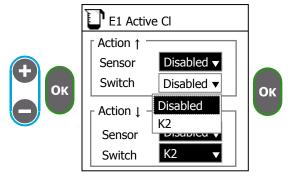

Flow-meter selection is only available if you had defined a flow sensor on input screen.

Ф	Select the flowmeter unit Flow-meter K1 ▼ Unit I/min ▼ Flow-swit I/min + + I/h m3/h Unflow if all inactives ▼	
	This unit will be used for feature confi ► You can use 4 switches in same tim	guration like the flow thresholds. The to detect flowing, to add a switch navigate on one of
	he button + using ok key ar button.	nd press until your switch name appear into the
+ - Ок		Flow-switch
	Unflow if all inactives ▼	Unflow if all inactives ▼

To select a switch or an analog input configured as switch, the corresponding input must be defined as switch on the input screen.

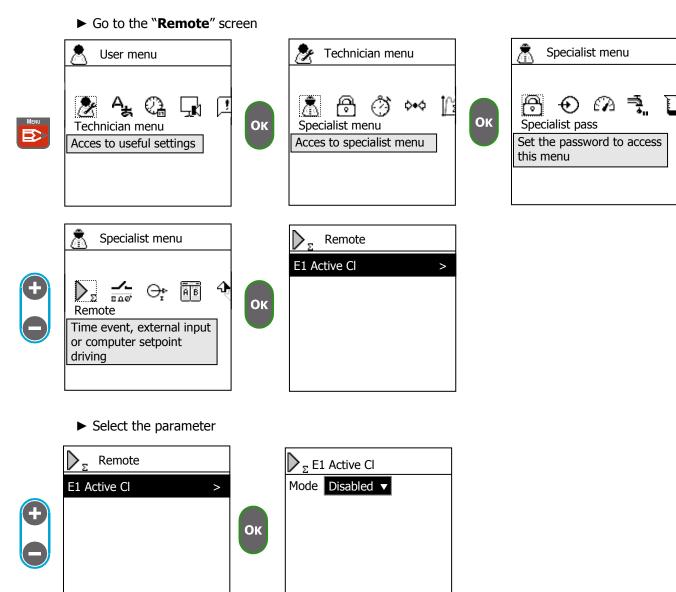
Take care about the switch stand configuration. If switch stand is NO and switch state is open the corresponding switch is inactive therefore the no flowing indication the main screen and parameter control is stopped.


► Select the flow detection conditional operation


	all inactives	To indicate flowing stop, all the selected
		switches and flowmeter must be inactive
	at less 1	If at less one of the switches is inactive or
		flowmeter is low the flowing stop is detected
,		

5) <u>Tank configuration</u>

This menu allows you to select which switches and volume meter are used to detect empty tanks.

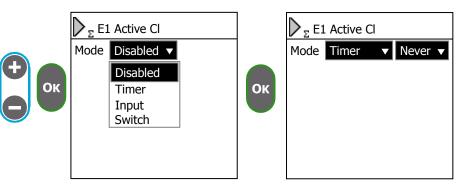

► Select for each tank action the switch and/or the volume sensor used to check the empty tanks.

The action \uparrow correspond to the chemical product use to increase the measurement value, and action \downarrow decrease the measurement value eg. pH+ is action \uparrow and pH- is action \downarrow .

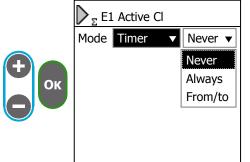
6) <u>Remote</u>

This menu allows you to remote the control of a parameter, you can stop it or drive the set point using a timer or an external input.

A remote can only be assigned to a parameter with control enabled in the control screen.

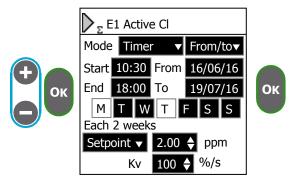

► Select the mode

	$\sum_{\Sigma} E1$	Active Cl	
	Mode	Disabled v	
H		Disabled	
Ок		Timer	
		Input	
		Switch	


Disabled	No remote is applied to the parameter		
Timer	The control can be stopped or setpoint can		
	change during timer slot		
Input	The setpoint of a control can follow the value		
	of an input sensor		
Switch	A switch contact is used to change control		
	setpoint or stop control		

Using "Timer" mode:

► Select the "Timer" mode



► Select when the remote control will be done

	Never	Remote will never happens				
	Always	You can only select a starting date				
er ▼ er	From/to	You can select both starting and ending dates				
ys n/to						

- ► Set the time slot "Start" and "End".
- ► Set the beginning and ending dates, "From" and "To".
- Set the days of week which your time slot will be done.
- ► Set the week repletion, means your time slot will be repeated each X weeks.

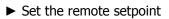
Start and **End** field define the time slot of working. **From** and **To** allows you to define the dates interval where the time slot will be done.

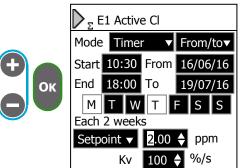
The "**MTWTFSS**" button represent each days of week, it allows you to choose witch days the timer slot will work.

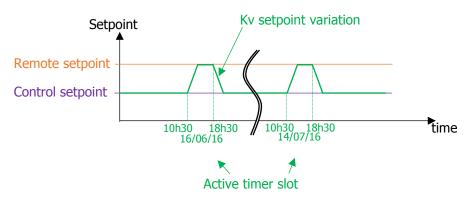
You can also define the repetition interval of the defined week.

Example of configuration:

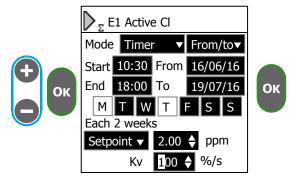
According the previous screen settings and the calendar. Timer slot **start** at 10h30 **end** at 18h00, it works **from** 16th june 2016 **to** 19th july 2016, the permeated days are only on Monday and Thursday. Week interval is 2 so allowed weeks are:


13th june- 19th june 27th june – 3rd july 11th july- 17th july


	June						
Μ	Т	W	Т	F	S	S	
		1	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	21	22	23	24	25	26	
27	28	29	30				
	July						
Μ	Т	W	Т	F	S	S	
				1	2	ω	
4	5	6	7	8	9	10	
11	12	13	14	15	16	17	
18	19	20	21	22	23	24	
25	26	27	28	29	30	31	


Therefore, timer dates are 16, 27, 30th june and 11, 14th july, starting at 10h30 and ending at 18h00.

► Select the remote action


	E1 Active Cl	Stop	When timer is active, the control is stopped		
	V 2	Setpoint	When timer is active, the control setpoint is		
	Mode Timer ▼ From/to▼		substituted by the remote setpoint.		
(+)	Start 10:30 From 16/06/16				
ОК	End 18.00 To 10/07/16				
	Stop T F S S Setpoint				
	Setpoint ▼ 2.00 ♦ ppm				
	Kv 100 ♦ %/s				

► Set the variation speed between control setpoint and remote setpoint.

Kv is the speed variation between the control setpoint and the remote setpoint.

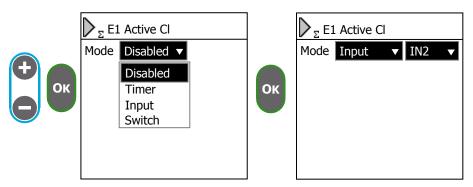
Eg. control setpoint = 1ppm remote setpoint = 2ppm Kv = 10%

At the beginning of timer slot, setpoint is 1ppm, it will increase by (2ppm-1ppm) X 10% = 0.1ppm each seconds.

Therefore, the remote setpoint will be reached 10 s after the start of slot.

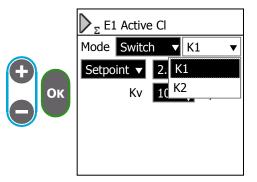
If Kv is set to 0% or 100% the remote setpoint is immediately reached.

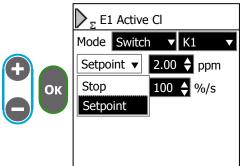
When a remote control is active the symbol \blacktriangleright is displayed on main screen.


Using "Input" mode:

This mode allows you to remote the control of a parameter using an input. To do than you must define the remote input with the same kind as you defined the parameter kind.

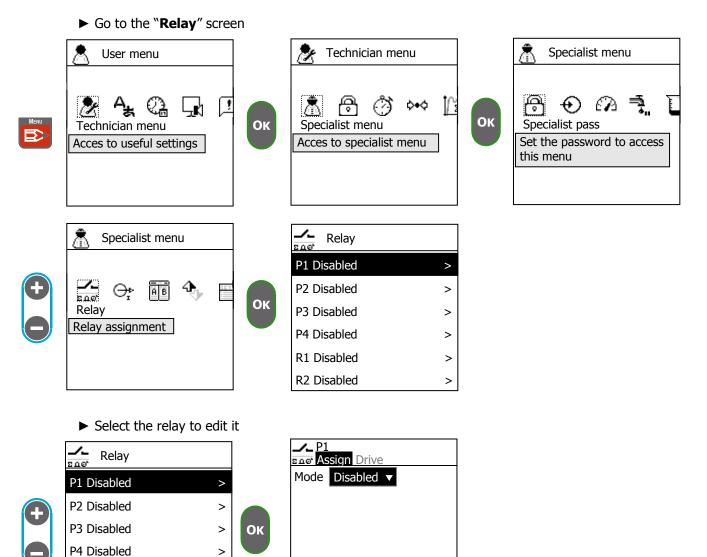
If you want to remote E1 active chlorine setpoint using the IN2 input, you must define IN2 as active chlorine with the appropriate scale.


► Select the "**Input**" mode


Using "Switch" mode:

This mode allows you to remote the control of a parameter using a switch. You can stop the control or change the setpoint.

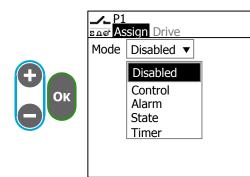
Select the switch


► Select the remote action

Stop	When switch is active, the control is stopped		
Setpoint When switch is active, the control setpoint			
	substituted by the remote setpoint.		

7) <u>Relay</u>

This menu allows you to define which action is realized by your relays.

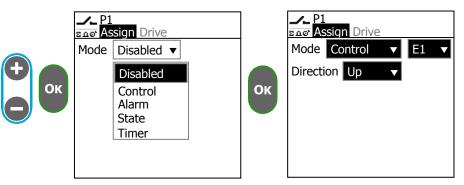

► Select the mode

>

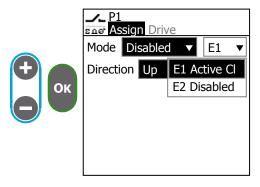
>

R1 Disabled

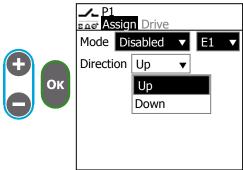
R2 Disabled



Disabled	The relay is not driven; it stays at the rest position
Control	The relay is used to drive a dosing pump or valve.
Alarm	Alarm event like measurement threshold can drive the relay.
State	Copy of the state of another relay or a switch.
Timer	Relay is active during or out the timer slot.


Using "Control" mode:

This mode allows you to drive an actuator to perform control action.


► Select the "Control" mode

► Choose which parameter is assigned to this relay

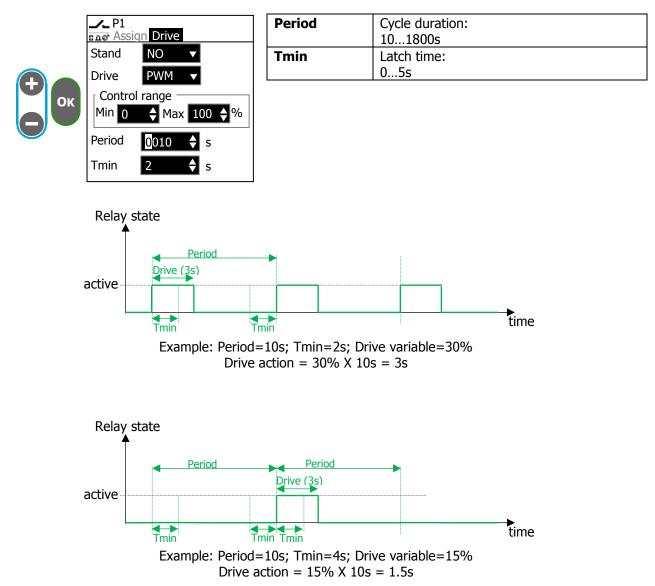
► Select the control direction of the actuator connected to this relay

Up	action eter val	increase	the	assigned
Down	action eter val	decrease	the	assigned

Eg. In case you want to drive a dosing pump of chlorine to increase the value of your process you must select "Up" direction.

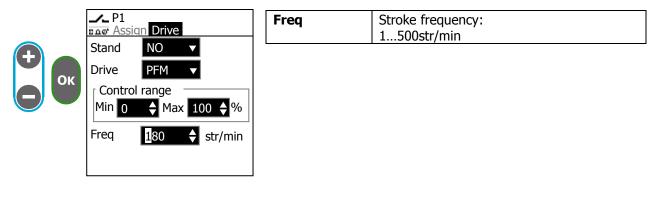
► Select relay rest stand

	P1 Ene Assign Drive	NO NC
	Stand NO 🔻	INC
Ð	Drive NO	
ОК	Contro NC Min 0 ♦ Max 100 ♦]
Ŭ	Period 10 🕈 s	
	Tmin 0 🔶 s	


Normally Open
Normally Closed

► Select the drive method

	P1	n Drive	
	Stand	NO 🔻	
Ð	Drive	PWM 🔻]
Ок		ON/OFF	
	Min 0	PWM	00 ♦ %
	Period	PFM	s
	Tmin	0 🔶	s


ON/OFF	If drive is needed the relay is active, if not is
	inactive
PWM	Pulse Width Modulation. Relay do pulses with active state duration proportional to the
	drive variable.
PFM	Pulse Frequency Modulation. Relay do pulses with frequency proportional to the drive variable.

- ► Set the cycle duration "**Period**" (PWM only)
- ► Set the minimum latch time "Tmin" (PWM only)



During the first period, drive action is smaller than "Tmin" so relay is not active, during the second period drive action is the sum of current needed drive and the previous undone action (1.5s + 1.5s) = 3s

► Set the maximal stroke frequency "**Freq**" (PFM only)

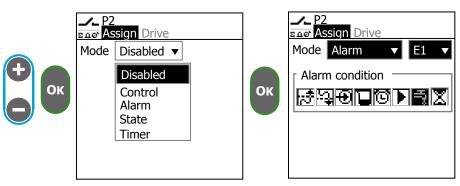
► Set the control range "Min" and "Max".

Min	Drive variable value corresponding to the minimal action of the relay (stop of dosing): 0100%
Max	Drive variable value corresponding to the maximal action of the relay (max dosing): 0100%
	· ·

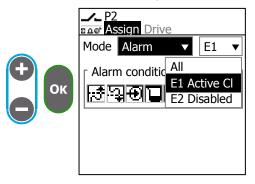
Tis function allows you do drive different actuator depends on the drive variable.

Example of configuration:

	P1	P2	P3	R1	R2
Direction	Up	Up	Down	Down	Down
Control range	20100%	020%	010%	1070%	70100%
Max pump	15l/h	1l/h	1l/h	2l/h	5l/h
flow					


Relays action/pump flow vs Drive variable

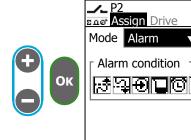
Drive variable	P1	P2	P3	R1	R2
100%	100%	100%	0	0	0
	15l/h	1l/h	0	0	0
30%	12.5%	100%	0	0	0
	1.88l/h	1l/h	0	0	0
10%	0%	50%	0	0	0
	0l/h	0.5l/h	0	0	0
5%	0%	25%	0	0	0
	0l/h	0.25l/h	0	0	0
0%	0	0	0	0	0
	0	0	0	0	0
-5%	0	0	50%	0%	0%
	0	0	0.5l/h	0l/h	0l/h
-10%	0	0	100%	0%	0%
	0	0	1l/h	0l/h	0l/h
-30%	0	0	100%	16.7%	0%
	0	0	1l/h	0.33l/h	0l/h
-80%	0	0	100%	100%	33%
	0	0	1l/h	2l/h	1.67l/h
-100%	0	0	100%	100%	100%
	0	0	1l/h	2l/h	5l/h


Using "Alarm" mode:

This mode allows you to drive a relay in case of alarm.

► Select the "Alarm" mode

► Choose which parameter is checked

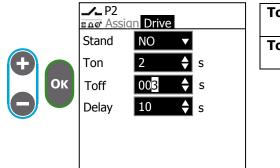

If you select "All", both E1 and E2 alarms events will cause an alarm that can drive the relay.

► Choose which alarms can drive the relay

▼ E1

MIRIX

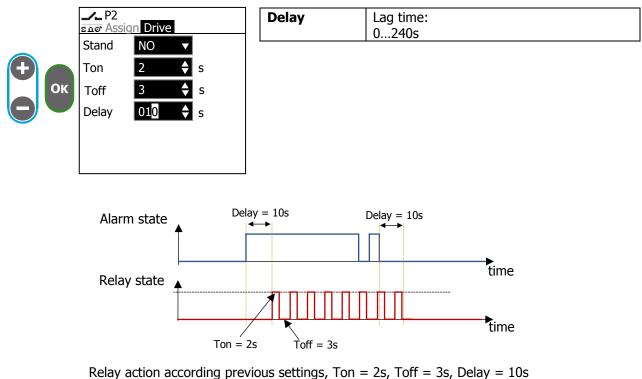
 ∇


ت ح:	High threshold alarm
_ <u>_</u>	Low threshold alarm
Ð	Sensor fault, out of range or disconnected
	Overdose time or empty tank
[U	Pause due to a timer
	Control remote
	Water not flowing
X	Pause due to a sensor delay

Select the rest stand

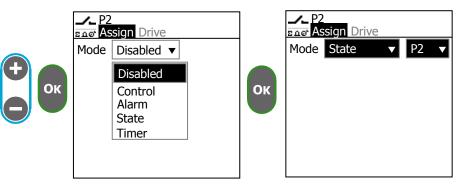
P2 Edge Assig	n Drive
Stand	NO 🔻
Ton	NO
Toff	NC
Delay	10 🔶 s
	Ener Assig Stand Ton Toff

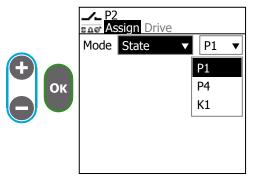
NO	Normally Open
NC	Normally Closed


► Set "Ton" and "Toff" tilt duration

Ton	Active time:
	0240s
Toff	Inactive time:
	0240s

Here you can define the active time "Ton" and the inactive time "Toff", to drive the relay when an alarm pending.

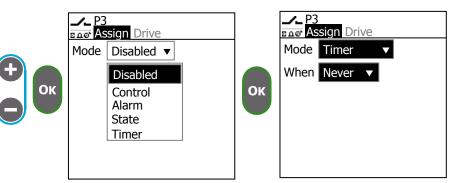

► Set "**Delay**" the lag time before and after the alarm to drive the relay


Using "State" mode:

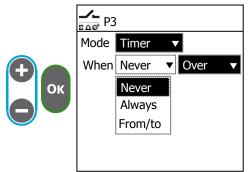
This mode allows you to copy the state of another relay or a switch

► Select the "State" mode

► Select which relay or switch is copied

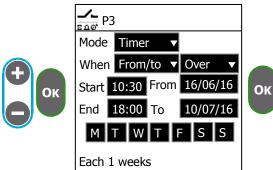


This list contains all the relay and switches who are not disabled.


Using "Timer" mode:

This mode allows you to drive a relay according a timer slot

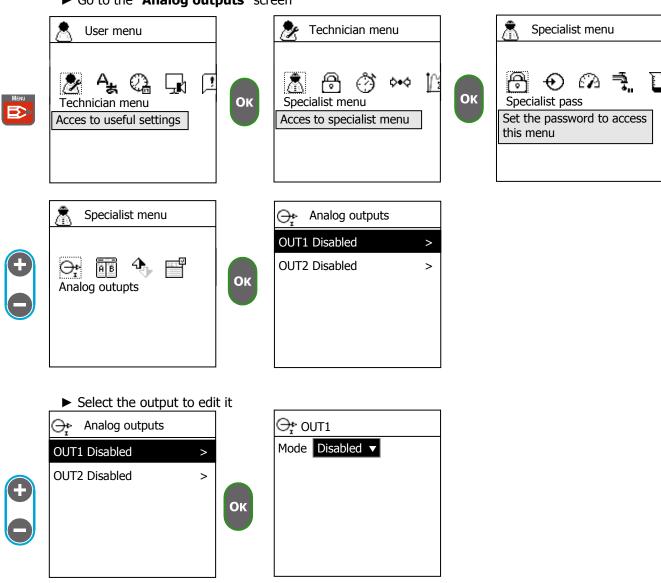
► Select the "**Timer**" mode



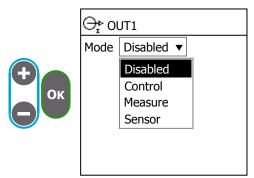
Select when the relay is active

Never	Timer is disabled
Always	You can only select a starting date
From/to	You can select both starting and ending dates
Over	Relay is active during the timer slot
Out	Relay is inactive during the timer slot

- ► Set the time slot "Start" and "End".
- ► Set the beginning and ending dates, "From" and "To".
- ► Set the days of week which your time slot will be done.
- ► Set the week repletion, means your time slot will be repeated each X weeks.

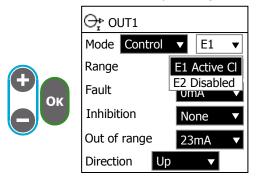

Start and **End** field define the time slot of working. **From** and **To** allows you to define the dates interval where the time slot will be done.

The "**MTWTFSS**" button represent each days of week, it allows you to choose witch days the timer slot will work.


You can also define the repetition interval of the defined week.

8) Analog outputs

► Go to the "Analog outputs" screen



Select the mode

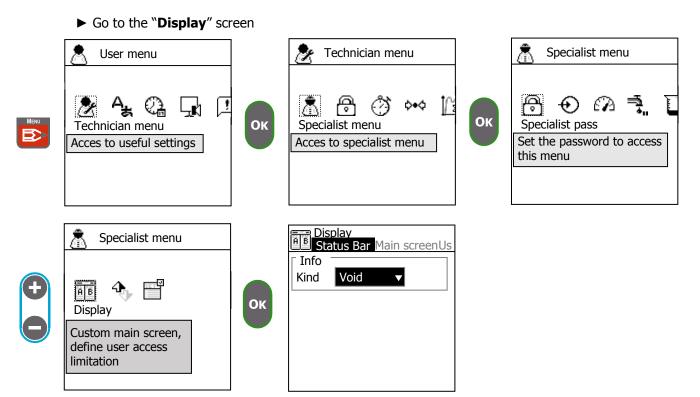
Disabled	The output is disabled.	
Control	The output is used to drive a dosing pump	
	or valve.	
Measure	A parameter measure is transferred to the	
	output	
Sensor	A sensor measure is transferred to the	
	output.	

► Select the output assignment

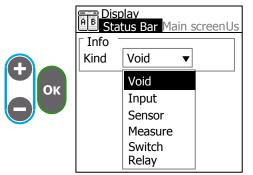
- ► Select the current range
- ► Select the specifics states currents

	⊖• OUT1		Range	Output current range:
	Mode Control V	E1 🔻		020mA
Ск	Range 2 Fault 0 Inhibition 1	420mA ▼ DmA ▼ None ▼ 23mA ▼	Fault	420mA Current when fault occurs on measure or configuration (sensor disconnected, short circuit, bad settings): 0mA 0/4mA (0 or 4 depending the range)
	Direction Up		Inhibition	2.6mA Current during temporary pause (water flowing pause, menu editing): None OmA 0/4mA (0 or 4 depending the range) 3.4mA
			Out of range	Current when measure is out of range: 23mA 20mA 20.8mA

Select the dosing direction (control only)

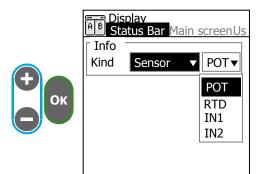


E


⊖r out1				
Mode Contr	ol	▼	E1	V
Range		4.	20m	A 🔻
Fault		0r	nA	T
Inhibition				
Out of range	Up Dov	vn		
Direction	Up		▼	-

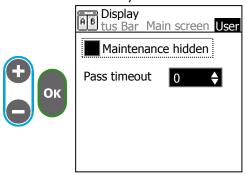
	Up	The	actuator	action	can	increase	the
+		meas	surement v	alue.			
	Down				can	decrease	the
		meas	<u>surement v</u>	alue.			

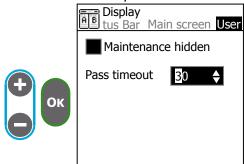
9) Display



► Select the information kind you want to display in the status bar

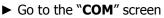
Void	The information zone of the status bar is void
Input	Input value:
	(mV, Ohm, mA, Hz)
Sensor	Sensor value:
	POT, RTD, IN1, IN2
Measure	Measurement value of a parameter:
	E1, E2
Switch	State of a switch
Relay	State of a relay

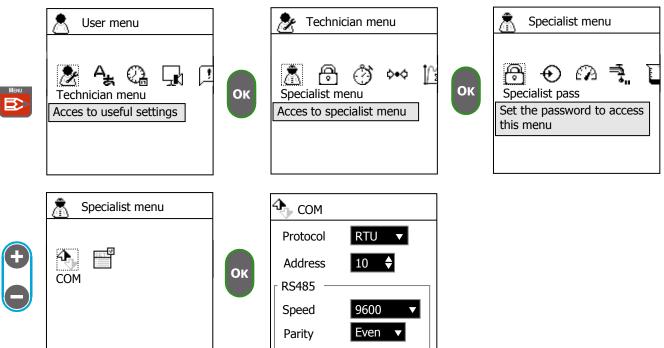

Select the information

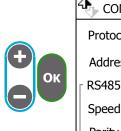

► Select the display mode

С	Display Mode 2V Order 2V EI E2 2H Relays state Switches state	Mode	Main screen display mode: 2V (2 parameters vertical) 2H (2 parameters horizontal)
screen	Define the parameters order Display Display Status BaMain screen User	r, means	s the parameter is no displayed on the main
С	Bistatus BaMain screen User Display Mode 2V Order E2 E2 Relays state Switches state		
i	Pressing OK key on the main	screen invert th	e current parameters order.
	Select if you want to see the	used relavs stat	e
	Select if you want to see the		tate
	Display Status Ba <mark>Main screen</mark> User	E Active CI	+*ON [©] 16:36 E pH
	Display Mode 2V	1 ^{IN1}	2 POT
Ð	Order	1.8	7 6.8
ОК		*** :2.0	PPM Φ ■ Φ PH ++++ :7.2
	 ✓ Relays state ✓ Switches state 	26% P2 P4	P3 R1 R2
			Relays state
	P2 oper		Switches state
	P2 oper P4 close K1 close	ed	

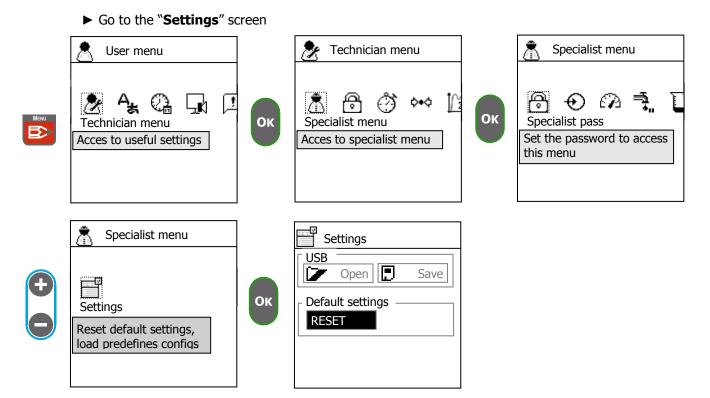
► Select if you want to hide the maintenance icon on the user menu

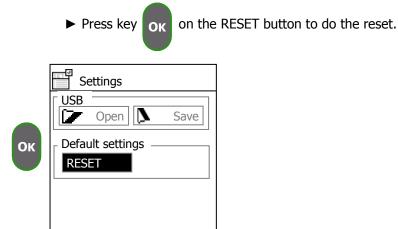



► Set the password timeout


locked menu: 03600s

10) Communication


- ► Select the Modbus protocol
- Select the Modbus address (device slave id)
- ► Select the serial communication speed
- ► Select the serial communication parity


🕀 сом	
Protocol	RTU 🔻
Address	10 🔶
RS485 —	
Speed	9600 🔻
Parity	Even 🔻

Protocol	Modbus specific protocol according your
	local network protocol:
	RTU, ASCII
Address	Slave ID
	1247
Speed	Baudrate:
-	300
	1200
	2400
	4800
	9600
	19200
	38400
	57600
	115200
Parity	Serial parity
	None, Odd, Even

11) Settings

This screen allows you to do a factory reset.

After reset the device will automatically restart.

All the settings and calibrations are cleared, you must do the configuration of the device and calibrate your sensors.

IX. USB

Your device has a USB connection for connecting a USB stick. This allows you to :

- > Save the measurement data and your device dosage
- > Save and load a configuration file
- Update device firmware

1) Data recording

Data recording allows you to trace operating of your device. The recording is performed at constant interval, you can set this time in the technician menu> Save.

Without USB device is able to retain the last 15 minutes fo recording. Once the stick is connected to the device data is automatically recorded each time intervals.

The data is recorded in a CSV file. You can read it with a text editor or using your spreadsheet. The file name is the date of the recordings.

TimeRecording timePOT.valueMeasure valuePOT.faultInput fault (unconnected or out of range)POT.delayedSensor delayedRTD.valueMeasure valueRTD.faultInput fault (unconnected or out of range)RTD.delayedSensor delayedIIN1.valueMeasure valueIIN1.valueMeasure valueIIN1.faultInput fault (unconnected or out of range)IIN1.valueMeasure valueIIN2.ralueMeasure valueIIN2.ralueMeasure valueIIN2.faultInput fault (unconnected or out of range)IIN2.faultInput fault (unconnected or out of range)IIN2.delayedSensor delayedK1.valueMeasure valueK1.faultInput fault (unconnected or out of range)K1.delayedSensor delayedK2.valueMeasure valueK2.valueMeasure valueK2.faultInput fault (unconnected or out of range)K2.delayedSensor delayedK1.activeSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K2.cosedSwitch physical state (open or dosed)K2.activeSwitch active state (depending the stand NO/NC)K2.activeSwitch active state (depending the stand	Row	Description
POT.faultInput fault (unconnected or out of range)POT.delayedSensor delayedRTD.valueMeasure valueRTD.faultInput fault (unconnected or out of range)RTD.delayedSensor delayedIIN1.valueMeasure valueIIN1.delayedSensor delayedIIN1.delayedSensor delayedIIN1.delayedSensor delayedIIN2.valueMeasure valueIIN2.faultInput fault (unconnected or out of range)IIN2.faultInput fault (unconnected or out of range)IIN2.delayedSensor delayedK1.raulueMeasure valueK1.raulueMeasure valueK1.delayedSensor delayedK1.delayedSensor delayedK1.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.enabledControl and alarm enabledE1.threshold_highHigh threshold crossedE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.threshold_lowLow threshold crossedE1.valueMeasure valueE1.valueMeasure value		
POT.delayed Sensor delayed RTD.value Measure value RTD.fault Input fault (unconnected or out of range) RTD.delayed Sensor delayed IIN1.value Measure value IIN1.value Measure value IIN1.fault Input fault (unconnected or out of range) IIN1.delayed Sensor delayed IIN2.raule Measure value IIN2.fault Input fault (unconnected or out of range) IIN2.delayed Sensor delayed K1.value Measure value K1.delayed Sensor delayed K1.value Measure value K1.delayed Sensor delayed K2.value Measure value K2.value Measure value K2.value Measure value K2.dalue Measure value K2.value Measure value K2.value Measure value K2.clayed Sensor delayed K1.active	POT.value	Measure value
RTD. valueMeasure valueRTD. faultInput fault (unconnected or out of range)RTD. delayedSensor delayedIIN1. valueMeasure valueIIN1. valueMeasure valueIIN1. valueMeasure valueIIN2. valueMeasure valueIIN2. valueMeasure valueIIN2. valueMeasure valueIIN2. delayedSensor delayedK1. valueMeasure valueK1. valueMeasure valueK1. valueMeasure valueK1. valueMeasure valueK1. delayedSensor delayedK2. valueMeasure valueK2. valueMeasure valueK2. valueMeasure valueK2. valueMeasure valueK2. dalueMeasure valueK2. dalueSensor delayedK1. delayedSensor delayedK2. dalueMeasure valueK2. delayedSensor delayedK2. delayedSensor delayedK1. delayedSensor delayedK2. delayedSwitch active state (open or closed)K2. delayedPause due to a sensor s	POT.fault	Input fault (unconnected or out of range)
RTD.faultInput fault (unconnected or out of range)RTD.delayedSensor delayedIIN1.valueMeasure valueIIN1.faultInput fault (unconnected or out of range)IIN1.delayedSensor delayedIIN2.valueMeasure valueIIN2.delayedSensor delayedIIN2.delayedSensor delayedIIN2.delayedSensor delayedIIN2.delayedSensor delayedK1.valueMeasure valueK1.taultInput fault (unconnected or out of range)K1.delayedSensor delayedK1.delayedSensor delayedK2.valueMeasure valueK2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK1.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.twerkold_lowLow threshold crossedE1.twerkold_lowLow threshold crossedE1.twerkold_lowLow threshold crossedE1.twerkold_lowMeasure valueE1.twerkold_lowMeasure valueE1.twerkold_lowMeasure value<	POT.delayed	
RTD.delayedSensor delayedIIN1.valueMeasure valueIIN1.taultInput fault (unconnected or out of range)IIN1.delayedSensor delayedIIN2.valueMeasure valueIIN2.valueMeasure valueIIN2.delayedSensor delayedX1.valueMeasure valueIIN2.delayedSensor delayedX1.staultInput fault (unconnected or out of range)X1.delayedSensor delayedX1.delayedSensor delayedX2.valueMeasure valueX2.valueMeasure valueX2.delayedSensor delayedX2.delayedSensor delayedX2.delayedSensor delayedX2.delayedSensor delayedX2.delayedSensor delayedX2.delayedSensor delayedX1.closedSwitch physical state (open or closed)X1.activeSwitch physical state (open or closed)X2.activeSwitch active state (depending the stand NO/NC)X2.closedSwitch active state (depending the stand NO/NC)X2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.twerePause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.valueMeasure valueE1.valueMeasure valueE1.valueMeasure valueE1.val	RTD.value	Measure value
IIN1.valueMeasure valueIIN1.faultInput fault (unconnected or out of range)IIN1.faultInput fault (unconnected or out of range)IIN2.valueMeasure valueIIN2.faultInput fault (unconnected or out of range)IIN2.delayedSensor delayedK1.valueMeasure valueK1.valueMeasure valueK1.delayedSensor delayedK2.valueMeasure valueK2.valueMeasure valueK2.raultInput fault (unconnected or out of range)K2.delayedSensor delayedK2.valueMeasure valueK2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_lowLow threshold crossedE1.verdoseMax dosing time or empty tankE1.timerPause due to a timerE1.valueMeasure valueE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and	RTD.fault	Input fault (unconnected or out of range)
IIN1.faultInput fault (unconnected or out of range)IIN1.delayedSensor delayedIIN2.valueMeasure valueIIN2.faultInput fault (unconnected or out of range)IIN2.delayedSensor delayedK1.valueMeasure valueK1.faultInput fault (unconnected or out of range)K1.delayedSensor delayedK1.delayedSensor delayedK2.valueMeasure valueK2.valueMeasure valueK2.delayedSensor delayedK2.delayedSensor delayedK1.delayedSensor delayedK2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.enabledControl and alarm enabledE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.threshold_lowLow threshold crossedE1.tremoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.yControl valueE2.enabledControl valueE2.enabledControl and alarm enabledE2.enabledControl and alarm enabledE3.valueMeasure valueE3.valueMeasure valueE3.valueMeasure valueE3.valueMeasure value <trr>E3.</trr>	RTD.delayed	Sensor delayed
IIN1.delayedSensor delayedIIN2.ralueMeasure valueIIN2.faultInput fault (unconnected or out of range)IIN2.delayedSensor delayedK1.valueMeasure valueK1.faultInput fault (unconnected or out of range)K1.faultInput fault (unconnected or out of range)K2.valueMeasure valueK2.valueMeasure valueK2.faultInput fault (unconnected or out of range)K2.delayedSensor delayedK2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE1.uDosing valueE2.enabledControl and alarm enabledE2.enabledControl and al	IIN1.value	Measure value
IIN2.valueMeasure valueIIN2.faultInput fault (unconnected or out of range)IIN2.delayedSensor delayedK1.valueMeasure valueK1.faultInput fault (unconnected or out of range)K1.delayedSensor delayedK2.valueMeasure valueK2.faultInput fault (unconnected or out of range)K2.delayedSensor delayedK2.faultInput fault (unconnected or out of range)K2.delayedSensor delayedK2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.valueMeasure valueE1.valueMeasure valueE1.yControl valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.enabledControl and alarm enabledE1.yDosing valueE2.enabledControl and alarm enabledE2.enabledControl and alarm enabledE2.enabledControl and alarm enabledE2.enabledControl and alarm enabled<	IIN1.fault	Input fault (unconnected or out of range)
IIN2.faultInput fault (unconnected or out of range)IIN2.delayedSensor delayedK1.valueMeasure valueK1.faultInput fault (unconnected or out of range)K1.delayedSensor delayedK2.valueMeasure valueK2.raultInput fault (unconnected or out of range)K2.delayedSensor delayedK2.delayedSensor delayedK2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.enabledControl and alarm enabled	IIN1.delayed	Sensor delayed
IIN2.delayedSensor delayedK1.valueMeasure valueK1.faultInput fault (unconnected or out of range)K1.delayedSensor delayedK2.valueMeasure valueK2.valueMeasure valueK2.delayedSensor delayedK2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	IIN2.value	Measure value
K1.valueMeasure valueK1.faultInput fault (unconnected or out of range)K1.delayedSensor delayedK2.valueMeasure valueK2.delayedSensor delayedK2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K1.activeSwitch physical state (open or closed)K2.closedSwitch active state (depending the stand NO/NC)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.overdoseMax dosing time or empty tankE1.imerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabled	IIN2.fault	Input fault (unconnected or out of range)
K1.faultInput fault (unconnected or out of range)K1.delayedSensor delayedK2.valueMeasure valueK2.faultInput fault (unconnected or out of range)K2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch active state (depending the stand NO/NC)K2.delayedSensor delayedK1.activeSwitch physical state (open or closed)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabled	IIN2.delayed	Sensor delayed
K1.delayedSensor delayedK2.valueMeasure valueK2.faultInput fault (unconnected or out of range)K2.faultInput fault (unconnected or out of range)K2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch physical state (open or closed)K2.closedSwitch active state (depending the stand NO/NC)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.enabledControl and alarm enabledE2.enabledPause due to a sensor startup	K1.value	Measure value
K2.valueMeasure valueK2.faultInput fault (unconnected or out of range)K2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabled	K1.fault	Input fault (unconnected or out of range)
K2.faultInput fault (unconnected or out of range)K2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabled	K1.delayed	Sensor delayed
K2.delayedSensor delayedK1.closedSwitch physical state (open or closed)K1.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabled	K2.value	Measure value
K1.closedSwitch physical state (open or closed)K1.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabled	K2.fault	Input fault (unconnected or out of range)
K1.activeSwitch active state (depending the stand NO/NC)K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.threshold_lowLow threshold crossedE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabled	K2.delayed	Sensor delayed
K2.closedSwitch physical state (open or closed)K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.enabledPause due to a sensor startup	K1.closed	Switch physical state (open or closed)
K2.activeSwitch active state (depending the stand NO/NC)E1.enabledControl and alarm enabledE1.enabledPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.overdoseMax dosing time or empty tankE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	K1.active	Switch active state (depending the stand NO/NC)
E1.enabledControl and alarm enabledE1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.enabledPause due to a sensor startup	K2.closed	Switch physical state (open or closed)
E1.delayedPause due to a sensor startupE1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	K2.active	Switch active state (depending the stand NO/NC)
E1.flowAnalysis water flowingE1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.enabled	Control and alarm enabled
E1.threshold_highHigh threshold crossedE1.threshold_lowLow threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.delayed	Pause due to a sensor startup
E1.threshold_lowLow threshold crossedE1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.flow	Analysis water flowing
E1.overdoseMax dosing time or empty tankE1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.threshold_high	High threshold crossed
E1.timerPause due to a timerE1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.threshold_low	Low threshold crossed
E1.remoteRemote control in progressE1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.overdose	Max dosing time or empty tank
E1.valueMeasure valueE1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.timer	Pause due to a timer
E1.yControl valueE1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.remote	Remote control in progress
E1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.value	
E1.uDosing valueE2.enabledControl and alarm enabledE2.delayedPause due to a sensor startup	E1.y	Control value
E2.delayed Pause due to a sensor startup		Dosing value
E2.delayed Pause due to a sensor startup	E2.enabled	Control and alarm enabled
	E2.delayed	Pause due to a sensor startup
	E2.flow	Analysis water flowing

Contenu du fichier :

E2.threshold_high	High threshold crossed
E2.threshold_low	Low threshold crossed
E2.overdose	Max dosing time or empty tank
E2.timer	Pause due to a timer
E2.remote	Remote control in progress
E2.value	Measure value
E2.y	Control value
E2.u	Dosing value
D1.enabled	Device state (control and alarm)
D1.halted	Device halted due to a configuration
D1.timer	Working timer enabled

2) Save and load a configuration file

This feature allows you to save the configuration of a device and load it on other devices.

To save current configuration:

- 1. Connect to USB stick to your device
- 2. Restart your device
- 3. Press OK button, you have only 3 seconds to do that
- 4. Wait few seconds
- 5. Device start

At the end of this procedure you will show 3 files into your stick: **<EEExxxY.bak>** configuration file <EXTxxxY.bak> data file <FWxxxY.bak> firmware file

xxxY is the software version.

To load the configuration on another device:

- 1. Rename <EEExxxY.bak> file to <EEExxxY.bin>
- 2. Connect the stick to your device
- 3. When device asking you if you want to load the configuration press OK button
- 4. Device automatically restart with the new configuration

3) Firmware update

This function allows you to update your device with the latest available version.

To update your device:

- 1. Save the firmware file into your USB stick <FWxxxY.bin>
- 2. When device asking you if you want to update press OK button
- 3. Device automatically restart and performed the update

NOTES

Programming instructions for SYCLOPE DOUBLEAU®

SYCLOPE Electronique S.A.S.

Z.I. Aéropole pyrénées Rue du Bruscos 64 230 SAUVAGNON - France – Tel : +33 (0) 559 337 036 Fax : +33 (0) 559 337 037 Email : <u>contact@syclope.fr</u> Internet : http://www.syclope.fr

© 2014 by SYCLOPE Electronique S.A.S.